<} RIPE NCC

Historical analysis of RIPE
Atlas data

ENOG17 | Alex Semenyaka

Goals of this tutorial

To share my own real experience with the historical analysis of
the RIPE Atlas data

|.e. getting data related to the objects in question when the meta-data
(measurement IDs) are unknown

To discuss different approaches to do this
And get understanding of their advantages and drawbacks

To provide newbies with some DOs and DONTs

All code snippets provided are written on Python3 but easily could be re-
written on any other language

RIPE NCC Days in Kyiv | 2019-09-25 | Alex Semenyaka

Who can it be useful for?

For engineers who investigate some network events in the past

Especially important if they did not run own measurement in advance

For researchers studying Internet development phenomena,
patterns and trends

For specialists doing fact checking regarding some happening
when the Internet involved

Basic model for this tutorial

® There are a list of networks

® There is a time range in which network events of interest could
occur

- To simplify the code, we will imit the time range to the November 1, 2020

* We are interested in our getting all measurement results in this
time range regarding the networks in our list

® The above code is only a PoC (in particular, there are no error
checks, timezone is GMT etc)

This model was chosen as the most typical one.

Approaches outlined in this tutorial may be naturally extended to any
other tasks that arising when working with historical data.

RIPE NCC Days in Kyiv | 2019-09-25 | Alex Semenyaka

RIPE Atlas is the RIPE NCC's main Internet data collection system. It is a
global network of devices, called probes and anchors, that actively

measure Internet connectivity. Anyone can access this data via Internet
traffic maps, streaming data visualisations, and an API. RIPE Atlas users can

also perform customised measurements to gain valuable data about their
own networks.

ENOG17 | Alex Semenyaka

Approaches to be discussed
RIPE Atlas API

Direct access to the RIPE Atlas storage

RIPE Atlas data in Google BigQuery

&

RIPE Atlas API

The most standard way
to do things

What to do &

Why it was not that straightforward before?

The endpoint hitps://atlas.ripe.net/api/vZ2/measurements/ had no parameter to filter
out all (or the most of) unnecessary measurements - fixed

The number of results can be too high (thus, we can hit ‘20,000 objects limit’)

How could this issue be solved?

If we are interested in some |IP-addresses, it could be only the IP-addresses either
of the probes or of the targets

Therefore, we can split the task into two smaller ones:
1. Find the probes located in networks in interest, and collect their results
2. Find the measurements targeted to networks Iin interest

ENOG17 | Alex Semenyaka

https://atlas.ripe.net/api/v2/measurements/

Measurements from the given probes &

First of all, the description of all active probes is stored here (daily):
https://ftp.ripe.net/ripe/atlas/probes/archive/<YYYY>/<mm>/<YYYY><mm><dd>.json.bz2

This file is one big JSON with the information of all probes to the moment it was
created

There we can pick up the IDs of the probes in our prefixes for the
given time interval In the past

Because we want to know the information about the past (not the current
situation), we must not use the hiips://atlas.ripe.net/api/vZ2/probes/ endpoint

ENOG17 | Alex Semenyaka

https://atlas.ripe.net/api/v2/probes/

Structure of the description

{ 'meta’: {..},
'objects’': [{ 'address v4': '82.95.114.207°,
'address v6': '2001:983:ba7e:1:220:4aff:fec8:23d7 ',
'asn v4': 3265,
'asn v6': 3265,
'status’': 1,

.},
]

10

Code: filter out the probes &

import bz2

from urllib.request import urlopen, urlretrieve
import json

from netaddr import *

URL = 'https://ftp.ripe.net/ripe/atlas/probes/archive/2020/11/20201101.json.bz2"'

networks = [IPNetwork() for in ('82.209.232.0/24', '37.212.0.0/14')]

with urlopen(URL) as bzstream:
decoded = bz2.open(bzstream, 'r')
allprobes = json.loads (decoded.read())

for probe in allprobes|['objects’']:
ipv4 = probe['address v4']
if not ipv4:
continue

How to get measurements from the given probes &

First, we get the measurement IDs from the https://atlas.ripe.net/api/
v2/measurements/

Then we extract the results for each measurement ID using the

endpoint https://atlas.ripe.net/api/v2/measurements/<ID>/results
and filter out the relevant for us

12

Collecting measurement IDs (“from”): code &

import requests

API EP = ‘https://atlas.ripe.net/api/v2/measurements/?start time lte={}
&stop time gt={}&participant logs_ probes={}"'
PROBES = (3596,3569,3986,4473,6878,18921,19445,19968,19975,19977,

19997,25114,32622,32627,32628,33212,54148,55796,1000444,
1000446,1000869,1000876,1000878,1001092,1001243,1001244)

start ts = ‘1604188800’ # 01/11/2010

stop ts = ‘1604275200’ # 02/11/2020

msms_ids = set() ,

for probe in PROBES: W Starts before the end of the time range
api call = API EP.format(stop ts, start ts, str(probe))
£e = requests.get(api_call) Ends after the beginning
msms = rc.json() i Eg -

Measurements towards to the given prefixes

There is a parameter of the endpoint https://atlas.ripe.net/api/v2/
measurements/ to filter on the target IP address:

target_ip=prefix

Sometimes can be easier to use another APl parameter filtering on
ASN:

target_asn=ASN

Alternatively, RIPE Stat APl can be used: hitps://stat.ripe.net/data-
api#atlas-targets

ENOG17 | Alex Semenyaka

14

https://atlas.ripe.net/api/v2/measurements/
https://atlas.ripe.net/api/v2/measurements/
https://stat.ripe.net/data-api#atlas-targets
https://stat.ripe.net/data-api#atlas-targets

Collecting measurement IDs (“to”): code &

import requests
from urllib.parse import quote

API EP = 'https://atlas.ripe.net/api/v2/measurements/?start time lte={}
&stop time gt={}&target ip={}"

PREFIXES = ('194.158.192.0/19', '82.209.192.0/18', '86.57.128.0/17',
'93.84.0.0/15', '178.120.0.0/13', '37.44.64.0/18',
'37.45.0.0/16', '37.212.0.0/14', '185.152.136.0/22")
'1004188800° # 01/11/2010

'1604275200" # 02/11/2020

start_ts
stop ts

msms ids = set ()

for prefix in PREFIXES:

api call = API EP.format(stop ts, start ts, quote(prefix, safe=""))
rc = requests.get(api call)

Getting the results in interest: code

import requests

API_EP
MSMS

for msm id

'https://atlas.ripe.net/api/v2/measurements/{}/results’

(27921412, 26080776, 26080777,

in MSMS:

api call = API EP.format(str(msm id))

rc
msins

requests.get(api call)
rc.json()

27925515,

27924506,

27924515)

What to think of — IMPORTANT &

The number of results can be too high

API results are paged, i.e. after getting of a chunk it is necessary to check if there is
more

Also, we can hit ‘20,000 objects limit

Network error and issues should be taken in care

Many APl requests mean that the failure in the midst of the code could lead to
starting from zero

Therefore, except with the simplest cases, it is necessary to provide error checking
at each step and start the logic of re-requests

17

References

https://atlas.ripe.net/docs/api/v2Z/imanual/
RIPE Atlas Manual

https://atlas.ripe.net/docs/api/v2/reference/
RIPE Atlas Reference

18

(K

RIPE Atlas data storage

Quick-and-dirty solution

Raw Atlas data
Real Bigdata

sslcert-2020-09-22T1900.bz2 23-Sep-2020 07:05
sslcert-2020-09-22T2000.bz2 23-Sep-2020 07:04
ssleert-2020-09-22T2100.bz2 ~ 23-Sep-2020 07:05

Last results are still publicly available:

i i . sslcert-2020-09-22T2200.bz2 23-Sep-2020 07:05
URL.: https://data-store.ripe.net/datasets/ saloert. 2020-00-27T2300hz2 23-Sep 2020 07:05
atlas-dail V -dum QS/ traceroute-2020-09-22T0000.bz2 23-Sep-2020 06:14

traceroute-2020-09-22T0100.bz2 23-Sep-2020 06:15
It keeps all measurement results collected traceroute-2020-09-22T0200.bz2 23-Sep-2020 06:11

by the RIPE Atlas during the last month traceroute-2020-09-22T0300.bz2 23-Sep-2020 06:11

" traceroute-2020-09-22T0400.bz2 23-Sep-2020 06:15
traceroute-2020-09-22T0500.bz2 23-Sep-2020 06:10
traceroute-2020-09-22T0600.bz2 23-Sep-2020 06:10
traceroute-2020-09-22T0700.bz2 23-Sep-2020 06:12
traceroute-2020-09-22T0800.bz2 23-Sep-2020 06:10
traceroute-2020-09-22T0900.bz2 23-Sep-2020 06:13

Screenshot of the file listing of the Atlas data storage

20

https://data-store.ripe.net/datasets/atlas-daily-dumps/
https://data-store.ripe.net/datasets/atlas-daily-dumps/
https://data-store.ripe.net/datasets/atlas-daily-dumps/

Files In the storage

i} ping-2020-10-21T1300.bz2 22-0ct-2020 06:46 1.0G

- - i} ping-2020-10-21T1400.bz2 22-0ct-2020 06:54 1.0G

E dC h fl I e con ta NS th e I} ping-2020-10-21T1500.bz2 22-0ct-2020 06:50 1.0G
. i} ping-2020-10-21T1600.bz2 22-0ct-2020 06:49 1.0G

measuremen tS Of th e g iven I} ping-2020-10-21T1700.bz2 22-0ct-2020 06:49 1.0G
. i} ping-2020-10-21T1800.bz2 22-0ct-2020 06:46 1.0G

ty pe m ad e d urin g 1 h our ¥ ping-2020-10-21T1900bz2 22-Oct-2020 06:46 1.0G
I} ping-2020-10-21T2000.bz2 22-0ct-2020 06:47 1.0G

Th ' I ¢ I » i} ping-2020-10-21T2100.bz2 22-Oct-2020 06:47 1.0G

= S_p eclda ty p c _ conne Ctl on _ i} ping-2020-10-21T2200.bz2 22-0ct-2020 06:47 1.0G

d eSCrlli beS SW|tCh | ng prO beS on I | ne/ I} ping-2020-10-21T2300.bz2 22-0ct-2020 06:48 1.0G

offline

The name contains the type of _
measurement and the stamp . |CMP measurements
when the file was created: :

<type-of-measurement>-<YYYY>-

Date: 2020-10-21 (October 21, 2020) |

21
ENOG17 | Alex Semenyaka

What is inside?

Each file contains all
measurements of the
given type made during
the corresponding hour

One measurement, one
line

Each measurement is
written as a separate
JSON object containing
all its data

22

How do we treat these files?

Import urllib.request

Import bz2
e Straightforward (naive) Import json
from netaddr import *
approach:
| | BZFILE = 'https.//data-store.ripe.net/
- Read files through bzip2- datasets/atlas-daily-dumps/2020-07-16/
tilter, connection-2020-07-16T0000.bz2"

_ Parse each line PREFIX = IPNetwork(‘194.158.192.0/19’)

*
IS
IS
Iy
IS
IS
IS
s
IS
*
IS

4

- Check if there is something bzstream = urllib.request.urlopen(BZFILE)
~., decoded = bz2.open(bzstream, 'r')

............. for In in decoded:
................. A msm_data = json.loads(ls)
“a [f msm_res[dst_addr’] in PREFIX:
<do something>

...

23
ENOG17 | Alex Semenyaka

What can ever go wrong?

Files are huge (I mean, HUGE)

Parsing can be really slow

Depending on what you want to extract
It can be so slow that the connection can even die
Extracting the data from one file can take more than 1 hour

In other words: new data in the storage can be accumulating faster than
we are treating the old ones

24

Why does it happen?

Is bzip2 using chunks large enough?

Yes

Is the json parsing is fast enough?

Yes

So where is the bottleneck?

Data checks, for example: matching IP-addresses (to select those in the
prefixes we are researching)

25

The solution: regular expression

® We know the prefixes to search - thus we can search them in the
string before parsing

- False positive will drop the speed but not significantly

* To do it faster we can use regex, first forming “aligned” prefixes
and concatenating them into the regular expression:
- Align:

185.179.80.0/22 = 185.179.80. 185.179.81. 185.179.82. 185.179.83.
2a0a:7d80::/31 = 2al0a:7d80: 2a0a:7d81:
185.79.16.0/22 = 185.79.16. 185.79.17. 185.79.18. 185.79.19

- Join everything, remembering to escape dots:
(?:185\.179\.80[185\.179\.81[185\.179\.82[185\.179\.83|2a0a:7d30:|
2a0a:7d81:]185\.79\.16\.|185\.79\.17\.|185\.79\.18\.|185\.79\.19\.)

ENOG17 | Alex Semenyaka

26

The solution: regular expression &

We can notice that the resulting regex is far from optimal, especially if
we deal with hundreds prefixes

Since we do not use any tricky patterns, there is a method to optimise
such regex by organising the original prefixes into the Trie structure

Basically, it groups your prefixes by characters
For the example above regex from the Trie will be:

We do not need reinvent the wheel, there are the ready-to-use code

Ex.. https://qgist.github.com/EricDuminil/8faabc2f3de82b24e5a371b6dc0fd1e0
(from https://stackoverflow.com/questions/42742810/speed-up-millions-of-regex-
replacements-in-python-3)

27

https://gist.github.com/EricDuminil/8faabc2f3de82b24e5a371b6dc0fd1e0

Regular expression: code &

from urllib.request import urlopen, urlretrieve
import bz2

import json

from netaddr import *

from ReTrie import Trie

import re

def compiled prefix re(prefixlist):
<..>

PREFIXES = ('194.158.192.0/19', '82.209.192.0/18', '86.57.128.0/17"',

'93.84.0.0/15', '178.120.0.0/13', '37.44.64.0/18',

'37.45.0.0/16', '37.212.0.0/14', '185.152.136.0/22")
'https://data-store.ripe.net/datasets/atlas-daily-dumps/2020-11-01/http-2020-11-01T2300.bz2"

URL

re comp = compiled prefix re(PREFIXES)

with urlopen(URL) as bsstresm: %.,_-Cou ld be a bit trick Yy for masks

The solution: regular expression

Applicable to other fields as well

Being used for filtering IP-addresses before converting the line to
JSON it makes the code much faster

Approximately 100 times faster with the Trie usage

Approximately 50 times faster with the straightforward concatenation of prefixes
Into the regular expression

AS

&

Google BigQuery
Powerful, but still beta

Google BigQuery

BigQuery is an enterprise data warehouse that solves this
problem by enabling super-fast SQL queries using the
processing power of Google's infrastructure.

RIPE Atlas data were uploaded to BigQuery and now are publicly
available for BigQuery users

The manual to start: https://github.com/RIPE-NCC/ripe-atlas-
bigquery/blob/main/docs/gettingstarted.md

31

Step 1: set it up
Make sure you have your account on Google

Visit https://console.cloud.qooqle.com/bigquerv?project=ripencc-

t
atlas

AKTUBUPYWTE 6ecnnaTHbIi NPo6HbIN nepuoa v nonyuute Kpeaut B 300 S. Bbl cMoXeTe Ucrnonbao Cosp,aHme NpoeKTa

Google Cloud Platform | Bbi6epute npoext w ~ o Onueg

A LOCTynHbIN OCTaTOK KBOTbI Ha projects: 12. OTnpaBbTe 3anpoc Ha
yBenun4eHue KBOTbl UK yaanuTe npoekTbl. [logpobHee...

@ BigQuery @ ®YHKUMU U UHOOPMALIUA
MANAGE QUOTAS

MUcTopusa 3anpocoB Pep,aKT' -

HasBaHue npoekra *
ENOG17

COXpaHeHHbIe 3arnpocobl

HAS Sa i NpeHTudukartop npoekTta: enog17. Ero Henb3sa 6yaeT U3MEHUTb NO3XKe.

U3MEHUTDb

MecTononoxeHue *
ﬁ] bes opraHusauuu

PoguTtenbckas opraHusauua nnu narika

CO30ATb OTMEHA

32

https://console.cloud.google.com/bigquery?project=ripencc-atlas
https://console.cloud.google.com/bigquery?project=ripencc-atlas

Step 2: prepare the RIPE Atlas data

Pecypchbli

Mouck Tabnuy n HabopoB AaHHbIX

» ripencc-atlas e I:D CoxpaHUTb 3anpoc aHWUTb NpeAcTaB/ieHne (® nNnanupoBaHue 3anpoca ~ & Ewe ~ .

ripencc-atlas E3 CO3[ATb HAEOP JAHHbIX X 3AKPEMUTb MPOEKT

- ~:~',

a ~ L & . ,
B .‘_ ’ R) 0 '_
TN . i

Pecypcbl B 3TOM npoekTe

MocMOTpeTb AaHHble MOXHO Ha naHenu "MlpoBoaHUK". Bbl Tak)Xe MOXeTe
co3aaThb HOBbIM HAabOp AaHHbIX C MOMOLLbIKO KHOMKMW BbiLLe.

@ BigQuery ® OYHKUWM U MHOOPMALIMA €@ KNABULUM

WcTopus 3anpocos ° BY WameHeH G [OCTYN MO CChINIKE + CO3[ATb HOBbI 3ANPOC [5) CKPbI

COXpaHeHHbIe 3anpocobl

MepeHoCHI
3annaHupoBaHHble 3anpochbl
Pe3epBupoBaHus

)aHUTb NpeacTaBneHune ® lMnaHupoBaHue 3anpoca ~ & Ewe ~
Bl Engine

33

Step 3: a first glance

BigQuery uses a SQL-based query language: https://
cloud.goodgle.com/bigquery/docs/reference

RIPE Atlas data were uploaded mostly as is

|P addresses has the internal type BYTES to operate with them, so all
addresses were converted accordingly

start_time has a type TIMESTAMP

34

https://cloud.google.com/bigquery/docs/reference
https://cloud.google.com/bigquery/docs/reference

Step 3: some howto’s

Some useful functions:

REGEXP EXTRACT(<string>, r'<regex>')

apply Perl regex to the string and return the match (you can use parenthesis to
select what part to return)

NET.IP FROM STRING(<string>)
convert string |IP address representation to internal one (BYTES)

NET.IP TRUNC(<IP-address>, <bits>)
set lowest bits of the IP-address to O

SAFE CAST (<expression> AS <type>)
cast an expression to the given type

Table on fly
WITH clause

35

Step 4: time to play

= BY WsmMmeHeH G AOCTYI MO CCbIJIKE + CO3[0ATb HOBbIN 3ATMPOC [+] CKPbITb PEOAKTOP

1 WITH networks AS (
2 SELECT 'by.belpak 194.158.192.0/19' as netstr UNION
SELECT 'by.belpak 82.209.192.0/18' UNION
SELECT 'by.belpak 86.57.128.0/17" UNION
SELECT 'by.belpak 93.84.0.0/15' UNION
SELECT 'by.belpak 178.120.0.0/13" UNION
SELECT 'by.belpak 37.44.64.0/18' UNION
SELECT 'by.belpak 37.45.0.0/16' UNION
SELECT 'by.belpak 37.212.0.0/14' UNION
SELECT 'by.belpak 185.152.136.0/22"
) 1
netsplit AS (
SELECT NET.IP FROM STRING(REGEXP EXTRACT(netstr,r'([0-9a-fA-F\.:]+)/')) AS netaddr,
] SAFE CAST(REGEXP EXTRACT(netstr,r'/([0-9]+)\s*$') AS INT64) AS netmask FROM networks
15)
16 SELECT * FROM netsplit

© Buinonnut v % CoxpaHuTb 3anpoc v :::1 CoxXpaHuUTb NpeacTaBNieHue (O NnaHupoBaHue 3anpoca ~ 2 Ewe ~

P63y1'|bTaTb| 3anpoca % COXPAHUTDb PE3YJIbTATHI & MPOCMOTPETb JAHHbIE w

3anpoc BbinonHeH 3a 0,3 cek. (o6paboTtaHo 0 b)

CBeeHUA 0 3afaHUK Pesynbrarbl AaHHble B popmaTe JSON CBeeHUA 0 BbINOSIHEHUW

Ctpoka netaddr netmask

1 wp/AAA== 19

3annaHupoBaHHble 3anpochbl
PesepBupoBaHus
Bl Engine

Pecypchbl

Mouck Tabnuu M HabopoB A aHHbIX

v enogl17

E sY

» ripencc-atlas

create our own data storage

3 CO3ATb HABOP JAHHbIX X 3AKPEMUTb NPOEKT

enog1/:BY

OnucaHue

HeT onucaHus

Pecypcbl B 3TOM npoekTe

MocMoTpeTb AaHHbIe MOXHO Ha naHenu "MpoBoaHUK". Bbl Tak)ke MoOXeTe
co3aaTtb HOBbIM HAbOp AaHHbIX C MOMOLLbIO KHOMKMU BblLLE.

CospaHue Habopa giF

v
(]
v q

NpenTudpukatop @hido:

. . AHrNUUCKUe 6y N

Y
MecTo 06paboTkun WY 2aTebHO)

EC (EU)

OKOHYaHMe CpoKa XpaHEeHUA TabnuLbl NO YMOTYaHUIO

® 60 gHer (MaKCMMYM B peXxume NecovHuLbl)
CpoK B iHSIX MOcne co3aHusi Tabnuubl:

60

WudposanHue
g = ABTOPU30BATb NF [aHHble WwudpytoTca aBTOMaTUYECKU. Bbibepute cnocob ynpaBneHus Ko4om

WwudpoBaHUs.
Cospatb Tabnuuy ® Kniovy,)irlpaBﬂﬂeMbIVI Google
e~ HacTpoiika He TpebyeTcs.

Kntoy, ynpaBnsieMbli KIIMEHTOM
Ynpaenenue B Google Cloud Key Management Service.

CBefieHus 0 Habope AaHHbIX

UapeHTudukatop Habopa
LaHHbIX

Bpems co3paHus
OkoHYaHue cpoka
XpaHeHus Tabnuubl No
YMOJYaHUIO

lMocnepHee nameHeHue

MecTo 06paboTKu

enog17:BY

9 Hos6. 2020 1., 06:19:30
60 gHen 0 .

9 Hos6. 2020 1., 06:19:30
EU

Co3paTtb Habop AaHHbIX OTMeHa

Step 7: upload our data

Co3paHue Tabnuubl

NCcTOYHUK

Co3partb Tabnuuy Ha ocHoBe: Bbibpatb daiin: dopmar daiina: B :

3arpysuTb v BY T ; 4 0630p CSV

MecTo Ha3Ha4YyeHus

® Hawntu npoekT YKasaTb Ha3BaHue npoekTa

HasBaHue npoekTa HasBaHue Ha6opa AaHHbIX Tun Taénuubli

ENOG17 BY - Tabnuua B cobcCTBe...

HasBaHue Tabnuubl

prefixes

Cxema

ABTOMaTM4ecKoe onpefeneHue
CxeMa 1 BXoAHble napaMeTpbl

) PepakTupoBaTb Kak TeKCT

Ha3BaHue Tvn Pexum

7

netstr STRING 4P REQUIRED v| X T
AEVER 5 ooAne i Aiad AN
=+ [o6aButb none | amcaaiecia

CeKLMOHUPOBaHME U KNnacTepusaums
CeKu,uouuposaHue

Cospatb Tabnuuy OTMmeHa

Step 8: use our data together with Atlas &

WITH netsplit AS (
SELECT NET.IP FROM STRING(REGEXP EXTRACT (netstr,r'([0-9a-fA-F\.:]+)/')) AS netaddr,
SAFE CAST (REGEXP_ EXTRACT (netstr,r'/([0-9]+)\s*$') AS INT64) AS netmask
FROM enogl7.BY.prefixes AS networks
)
SELECT msm id FROM
netsplit INNER JOIN ripencc-atlas .measurements.ping as msmdata
)]
(msmdata.start time > TIMESTAMP "2020-10-31 00:00:00+00")
AND

(
(netsplit.netaddr

(netsplit.netaddr

)
GROUP BY msm_id

NET.IP TRUNC (msmdata.src addr bytes, netsplit.netmask)) OR
NET.IP TRUNC (msmdata.dst addr bytes, netsplit.netmask))

Step 9: optimising queries &

INSERT enogl7-295103 .BY.split (name,mask)
WITH netsplit AS (
SELECT NET.IP FROM STRING(REGEXP EXTRACT (netstr,r'([0-9a-fA-F\.:]+)/')) AS netaddr,
SAFE CAST (REGEXP_EXTRACT (netstr,r'/([0-9]+)\s*$') AS INT64) AS netmask
FROM " enogl7-295103 .BY.prefixes AS networks

)
SELECT netaddr, netmask FROM netsplit;

SELECT msm_id FROM
"enogl7-295103 .BY.split AS netsplit INNER JOIN "ripencc-atlas .measurements.ping as msmdata
ON
(msmdata.start time > TIMESTAMP "2020-11-05 00:00:00+00")
AND

(

(netsplit.name
(netsplit.name

)

NET.IP TRUNC (msmdata.src_addr bytes, netsplit.mask)) OR
NET.IP TRUNC (msmdata.dst addr bytes, netsplit.mask))

Step 10: it happens

- BY & A0CTYN MO CCbIJIKE + CO3[ATb HOBbIA 3AMNPOC (%) CKPbITb PEQA

1 WITH netsplit AS (

2 SELECT NET.IP FROM STRING(REGEXP EXTRACT (netstr,r'([0-9a-fA-F\.:]+)/')) AS netaddr,

3 SAFE CAST(REGEXP EXTRACT(netstr,r'/([0-9]+)\s*$') AS INT64 AS netmask FROM
4

Quota exceeded: Your project exceeded quota for free query bytes scanned. For more information, see
https://cloud.google.com/bigquery/troubleshooting-errors

3AKPbITb

GROUP BY msm_id

% CoxpaHuTb 3anpoc v :iii CoxpanuTb npeactaBnedue (O MnaHvupoBanue 3anpoca v &% Ewe ~

Unclear issue
with IPv6 addresses

RIPE NCC Days in Kyiv | 2019-09-25 | Alex Semenyaka

| imitations for the

?ree account

The second argument of NET.IP_TRUNC() must be between 0 and 8 * LENGTH(first argument); got 35

41

Step 10: first impressions
Everything is still convenient and ready-to-use
Real analysis can take a while
Free account may be insufficient for the real work
Issues with IPv6 addresses

NCC part: measurement themselves have no data stamp
Cannot filter out irrelevant ones

42

To sum up

APl pros and contras

Pros

The most mature, robust and universal approach
The code is easily reusable in future

Contras

A researcher should know programming

Complex logic of the code

A researches has to deal with all corner cases and internal logic himself
It takes a long time to prepare the final code

44

Storage pros and contras

Pros

Easy to start
Simple logic, a researcher deals with the measurement results directly

Contras

Data available only for the last month
Parsing the files in the naive straightforward way can be extremely inefficient

45

BigQuery pros and contras

Pros

Extremely powerful tool
Can be easily integrated with other external tools
Shared access, easy to use in a team

Contras

To use all opportunities of the platform, one should learn a lot
Not free
From the NCC side:

has the beta status

measurement timestamps are missing

46

Questions 0

