
ENOG17 | Alex Semenyaka

Historical analysis of RIPE
Atlas data

RIPE NCC Days in Kyiv | 2019-09-25 | Alex Semenyaka

Goals of this tutorial

• To share my own real experience with the historical analysis of
the RIPE Atlas data
- I.e. getting data related to the objects in question when the meta-data

(measurement IDs) are unknown

• To discuss different approaches to do this
- And get understanding of their advantages and drawbacks

• To provide newbies with some DOs and DONTs

All code snippets provided are written on Python3 but easily could be re-
written on any other language

2

RIPE NCC Days in Kyiv | 2019-09-25 | Alex Semenyaka

Who can it be useful for?

• For engineers who investigate some network events in the past

- Especially important if they did not run own measurement in advance

• For researchers studying Internet development phenomena,
patterns and trends

• For specialists doing fact checking regarding some happening
when the Internet involved

3

RIPE NCC Days in Kyiv | 2019-09-25 | Alex Semenyaka

Basic model for this tutorial

• There are a list of networks

• There is a time range in which network events of interest could
occur
- To simplify the code, we will limit the time range to the November 1, 2020

• We are interested in our getting all measurement results in this
time range regarding the networks in our list

• The above code is only a PoC (in particular, there are no error
checks, timezone is GMT etc)

This model was chosen as the most typical one.
Approaches outlined in this tutorial may be naturally extended to any
other tasks that arising when working with historical data.

4

ENOG17 | Alex Semenyaka
5

RIPE NCC Days in Kyiv | 2019-09-25 | Alex Semenyaka

Approaches to be discussed

• RIPE Atlas API

• Direct access to the RIPE Atlas storage

• RIPE Atlas data in Google BigQuery

6

RIPE Atlas API
The most standard way

to do things

ENOG17 | Alex Semenyaka

What to do

• Why it was not that straightforward before?
- The endpoint https://atlas.ripe.net/api/v2/measurements/ had no parameter to filter

out all (or the most of) unnecessary measurements - fixed

- The number of results can be too high (thus, we can hit ‘20,000 objects limit’)

• How could this issue be solved?
- If we are interested in some IP-addresses, it could be only the IP-addresses either

of the probes or of the targets

- Therefore, we can split the task into two smaller ones:
1. Find the probes located in networks in interest, and collect their results
2. Find the measurements targeted to networks in interest

8

https://atlas.ripe.net/api/v2/measurements/

ENOG17 | Alex Semenyaka

Measurements from the given probes

• First of all, the description of all active probes is stored here (daily):
https://ftp.ripe.net/ripe/atlas/probes/archive/<YYYY>/<mm>/<YYYY><mm><dd>.json.bz2

- This file is one big JSON with the information of all probes to the moment it was
created

• There we can pick up the IDs of the probes in our prefixes for the
given time interval in the past

- Because we want to know the information about the past (not the current
situation), we must not use the https://atlas.ripe.net/api/v2/probes/ endpoint

9

https://atlas.ripe.net/api/v2/probes/

ENOG17 | Alex Semenyaka

Structure of the description

10

{'meta': {…},
 'objects': [{'address_v4': '82.95.114.207',
 'address_v6': '2001:983:ba7e:1:220:4aff:fec8:23d7',
 'asn_v4': 3265,
 'asn_v6': 3265,
 'status': 1,
 …},
 …]

ENOG17 | Alex Semenyaka

Code: filter out the probes

11

import bz2
from urllib.request import urlopen, urlretrieve
import json
from netaddr import *

URL = 'https://ftp.ripe.net/ripe/atlas/probes/archive/2020/11/20201101.json.bz2'

networks = [IPNetwork(_) for _ in ('82.209.232.0/24', '37.212.0.0/14')]

with urlopen(URL) as bzstream:
 decoded = bz2.open(bzstream, 'r')
 allprobes = json.loads(decoded.read())

for probe in allprobes['objects']:
 ipv4 = probe['address_v4']
 if not ipv4:
 continue
 for net in networks:
 if ipv4 in net:
 print(probe['id'])

ENOG17 | Alex Semenyaka

How to get measurements from the given probes

• First, we get the measurement IDs from the https://atlas.ripe.net/api/
v2/measurements/

• Then we extract the results for each measurement ID using the
endpoint https://atlas.ripe.net/api/v2/measurements/<ID>/results
and filter out the relevant for us

12

ENOG17 | Alex Semenyaka

Collecting measurement IDs (“from”): code

13

import requests

API_EP = ‘https://atlas.ripe.net/api/v2/measurements/?start_time__lte={}
&stop_time__gt={}&participant_logs_probes={}'
PROBES = (3596,3569,3986,4473,6878,18921,19445,19968,19975,19977,
 19997,25114,32622,32627,32628,33212,54148,55796,1000444,
 1000446,1000869,1000876,1000878,1001092,1001243,1001244)  
start_ts = ‘1604188800’ # 01/11/2010
stop_ts = ‘1604275200’ # 02/11/2020

msms_ids = set()

for probe in PROBES:
 api_call = API_EP.format(stop_ts, start_ts, str(probe))
 rc = requests.get(api_call)
 msms = rc.json()

 for measurement in msms['results']:
 msms_ids.add(measurement['id'])

print(msms_ids)

Starts before the end of the time range

Ends after the beginning
 of the time range

ENOG17 | Alex Semenyaka

Measurements towards to the given prefixes

• There is a parameter of the endpoint https://atlas.ripe.net/api/v2/
measurements/ to filter on the target IP address:

target_ip=prefix

• Sometimes can be easier to use another API parameter filtering on
ASN:

target_asn=ASN

• Alternatively, RIPE Stat API can be used: https://stat.ripe.net/data-
api#atlas-targets

14

https://atlas.ripe.net/api/v2/measurements/
https://atlas.ripe.net/api/v2/measurements/
https://stat.ripe.net/data-api#atlas-targets
https://stat.ripe.net/data-api#atlas-targets

ENOG17 | Alex Semenyaka

Collecting measurement IDs (“to”): code

15

import requests
from urllib.parse import quote

API_EP = 'https://atlas.ripe.net/api/v2/measurements/?start_time__lte={}
&stop_time__gt={}&target_ip={}'
PREFIXES = ('194.158.192.0/19', '82.209.192.0/18', '86.57.128.0/17',
 '93.84.0.0/15', '178.120.0.0/13', '37.44.64.0/18',
 '37.45.0.0/16', '37.212.0.0/14', '185.152.136.0/22')
start_ts = '1004188800' # 01/11/2010
stop_ts = '1604275200' # 02/11/2020

msms_ids = set()

for prefix in PREFIXES:
 api_call = API_EP.format(stop_ts, start_ts, quote(prefix, safe=''))
 rc = requests.get(api_call)
 msms = rc.json()

 for measurement in msms['results']:
 msms_ids.add(measurement['id'])

print(msms_ids)

ENOG17 | Alex Semenyaka

Getting the results in interest: code

16

import requests

API_EP = 'https://atlas.ripe.net/api/v2/measurements/{}/results'
MSMS = (27921412, 26080776, 26080777, 27925515, 27924506, 27924515)

for msm_id in MSMS:
 api_call = API_EP.format(str(msm_id))

 rc = requests.get(api_call)
 msms = rc.json()

 for result in msms:
 <check result[‘dst_addr’] and do smth>

ENOG17 | Alex Semenyaka

What to think of — IMPORTANT

• The number of results can be too high

- API results are paged, i.e. after getting of a chunk it is necessary to check if there is
more

- Also, we can hit ‘20,000 objects limit’

• Network error and issues should be taken in care
- Many API requests mean that the failure in the midst of the code could lead to

starting from zero

- Therefore, except with the simplest cases, it is necessary to provide error checking
at each step and start the logic of re-requests

17

ENOG17 | Alex Semenyaka

References

• https://atlas.ripe.net/docs/api/v2/manual/

- RIPE Atlas Manual

• https://atlas.ripe.net/docs/api/v2/reference/
- RIPE Atlas Reference

18

RIPE Atlas data storage
Quick-and-dirty solution

Screenshot of the file listing of the Atlas data storage

ENOG17 | Alex Semenyaka

Raw Atlas data

• Real Bigdata

• Last results are still publicly available:

- URL: https://data-store.ripe.net/datasets/
atlas-daily-dumps/

- It keeps all measurement results collected
by the RIPE Atlas during the last month

20

https://data-store.ripe.net/datasets/atlas-daily-dumps/
https://data-store.ripe.net/datasets/atlas-daily-dumps/
https://data-store.ripe.net/datasets/atlas-daily-dumps/

ENOG17 | Alex Semenyaka

Files in the storage

• Each file contains the
measurements of the given
type made during 1 hour
- The special type “connection”

describes switching probes online/
offline

• The name contains the type of
measurement and the stamp
when the file was created:

- <type-of-measurement>-<YYYY>-
<mm>-<dd>T<HH>00.bz2

ping-2020-10-21T1800.bz2:

 ICMP measurements

 Date: 2020-10-21 (October 21, 2020)

 Time: 18:00 UTC

21

ENOG17 | Alex Semenyaka

What is inside?

• Each file contains all
measurements of the
given type made during
the corresponding hour

• One measurement, one
line

• Each measurement is
written as a separate
JSON object containing
all its data

{“fw”:5020,”mver”:"2.2.1","lts":1122859,"dst_name":"92.223.65.18","af":4,"d
st_addr":"92.223.65.18","src_addr":"91.240.92.5","proto":"ICMP","ttl":56,"si
ze":64,"result":[{"rtt":36.525277},{"rtt":36.571163},{"rtt":36.602452}],"dup":0,
"rcvd":3,"sent":3,"min":36.525277,"max":36.602452,"avg":36.5662973333,"
msm_id":25637026,"prb_id":6816,"timestamp":1603306794,"msm_name":"
Ping","from":"91.240.92.5","type":"ping","group_id":25637025,"step":240}

{"fw":5020,"mver":"2.2.1","lts":1122859,"dst_name":"2803:4dc0:254::254","
af":6,"dst_addr":"2803:4dc0:254::254","src_addr":"2a0a:d880:0:200::5","pr
oto":"ICMP","ttl":49,"size":64,"result":[{"rtt":157.186851},{"rtt":157.098663},
{"rtt":157.178395}],"dup":0,"rcvd":3,"sent":3,"min":157.098663,"max":157.1
86851,"avg":157.1546363333,"msm_id":14395234,"prb_id":6816,"timesta
mp":1603306794,"msm_name":"Ping","from":"2a0a:d880:0:200::5","type":"
ping","group_id":14395233,"step":240}

22

ENOG17 | Alex Semenyaka

How do we treat these files?

• Straightforward (naive)
approach:

- Read files through bzip2-
filter,

- Parse each line

- Check if there is something
that we need

import urllib.request
import bz2
Import json
from netaddr import *

BZFILE = 'https://data-store.ripe.net/
datasets/atlas-daily-dumps/2020-07-16/
connection-2020-07-16T0000.bz2'
PREFIX = IPNetwork(‘194.158.192.0/19’)

bzstream = urllib.request.urlopen(BZFILE)
decoded = bz2.open(bzstream, 'r')

for ln in decoded:
msm_data = json.loads(ls)
if msm_res[‘dst_addr’] in PREFIX:

 <do something>

23

ENOG17 | Alex Semenyaka

What can ever go wrong?

• Files are huge (I mean, HUGE)

• Parsing can be really slow

- Depending on what you want to extract

- It can be so slow that the connection can even die

- Extracting the data from one file can take more than 1 hour

➡ In other words: new data in the storage can be accumulating faster than
we are treating the old ones

24

ENOG17 | Alex Semenyaka

Why does it happen?

• Is bzip2 using chunks large enough?

- Yes

• Is the json parsing is fast enough?

- Yes

• So where is the bottleneck?

- Data checks, for example: matching IP-addresses (to select those in the
prefixes we are researching)

25

ENOG17 | Alex Semenyaka

The solution: regular expression

• We know the prefixes to search - thus we can search them in the
string before parsing
- False positive will drop the speed but not significantly

• To do it faster we can use regex, first forming “aligned” prefixes
and concatenating them into the regular expression:
- Align:

185.179.80.0/22 ⇒ 185.179.80. 185.179.81. 185.179.82. 185.179.83.
2a0a:7d80::/31 ⇒ 2a0a:7d80: 2a0a:7d81:
185.79.16.0/22 ⇒ 185.79.16. 185.79.17. 185.79.18. 185.79.19

- Join everything, remembering to escape dots:
(?:185\.179\.80|185\.179\.81|185\.179\.82|185\.179\.83|2a0a:7d80:|
2a0a:7d81:|185\.79\.16\.|185\.79\.17\.|185\.79\.18\.|185\.79\.19\.)

26

ENOG17 | Alex Semenyaka

The solution: regular expression

• We can notice that the resulting regex is far from optimal, especially if
we deal with hundreds prefixes

• Since we do not use any tricky patterns, there is a method to optimise
such regex by organising the original prefixes into the Trie structure
- Basically, it groups your prefixes by characters

- For the example above regex from the Trie will be:
(?:185\.(?:179\.8(?:0\.|1\.|2\.|3\.)|79\.1(?:6\.|7\.|8\.|9\.))|2a0a:7d8(?:0:|1:))

• We do not need reinvent the wheel, there are the ready-to-use code
- Ex.: https://gist.github.com/EricDuminil/8faabc2f3de82b24e5a371b6dc0fd1e0

(from https://stackoverflow.com/questions/42742810/speed-up-millions-of-regex-
replacements-in-python-3)

27

https://gist.github.com/EricDuminil/8faabc2f3de82b24e5a371b6dc0fd1e0

ENOG17 | Alex Semenyaka

Regular expression: code

28

from urllib.request import urlopen, urlretrieve
import bz2
import json
from netaddr import *
from ReTrie import Trie
import re

def compiled_prefix_re(prefixlist):
 <…>

PREFIXES = ('194.158.192.0/19', '82.209.192.0/18', '86.57.128.0/17',
 '93.84.0.0/15', '178.120.0.0/13', '37.44.64.0/18',
 '37.45.0.0/16', '37.212.0.0/14', '185.152.136.0/22')
URL = 'https://data-store.ripe.net/datasets/atlas-daily-dumps/2020-11-01/http-2020-11-01T2300.bz2'

re_comp = compiled_prefix_re(PREFIXES)

with urlopen(URL) as bzstream:
 decoded = bz2.open(bzstream, 'r')
 for bytestr in decoded:
 line = bytestr.decode('utf-8')
 if not re_comp.search(line):
 continue
 msm_data = json.loads(line)
 <check msm_data['from'] and msm_data['dst_addr'] and do stuff>

Could be a bit tricky for masks
like /17 and shortened IPv6

ENOG17 | Alex Semenyaka

The solution: regular expression

• Applicable to other fields as well

• Being used for filtering IP-addresses before converting the line to
JSON it makes the code much faster
- Approximately 100 times faster with the Trie usage

- Approximately 50 times faster with the straightforward concatenation of prefixes
into the regular expression

29

Google BigQuery
Powerful, but still beta

RIPE NCC Days in Kyiv | 2019-09-25 | Alex Semenyaka

Google BigQuery

• BigQuery is an enterprise data warehouse that solves this
problem by enabling super-fast SQL queries using the
processing power of Google's infrastructure.

• RIPE Atlas data were uploaded to BigQuery and now are publicly
available for BigQuery users

• The manual to start: https://github.com/RIPE-NCC/ripe-atlas-
bigquery/blob/main/docs/gettingstarted.md

31

RIPE NCC Days in Kyiv | 2019-09-25 | Alex Semenyaka

Step 1: set it up

• Make sure you have your account on Google

• Visit https://console.cloud.google.com/bigquery?project=ripencc-
atlas

32

Now, create your
own project here

https://console.cloud.google.com/bigquery?project=ripencc-atlas
https://console.cloud.google.com/bigquery?project=ripencc-atlas

RIPE NCC Days in Kyiv | 2019-09-25 | Alex Semenyaka

Step 2: prepare the RIPE Atlas data

33

Select ripencc-atlas and pin it for future

Now we have this field
to play with data

RIPE NCC Days in Kyiv | 2019-09-25 | Alex Semenyaka

Step 3: a first glance

• BigQuery uses a SQL-based query language: https://
cloud.google.com/bigquery/docs/reference

• RIPE Atlas data were uploaded mostly as is
- IP addresses has the internal type BYTES to operate with them, so all

addresses were converted accordingly
- start_time has a type TIMESTAMP

34

https://cloud.google.com/bigquery/docs/reference
https://cloud.google.com/bigquery/docs/reference

RIPE NCC Days in Kyiv | 2019-09-25 | Alex Semenyaka

Step 3: some howto’s

• Some useful functions:
-REGEXP_EXTRACT(<string>, r’<regex>’)
➡ apply Perl regex to the string and return the match (you can use parenthesis to

select what part to return)

-NET.IP_FROM_STRING(<string>)
➡ convert string IP address representation to internal one (BYTES)

-NET.IP_TRUNC(<IP-address>, <bits>)
➡ set lowest bits of the IP-address to 0

-SAFE_CAST(<expression> AS <type>)
➡ cast an expression to the given type

• Table on fly
- WITH clause

35

RIPE NCC Days in Kyiv | 2019-09-25 | Alex Semenyaka

Step 4: time to play

36

RIPE NCC Days in Kyiv | 2019-09-25 | Alex Semenyaka

Step 5: create our own data storage

37

Not other
region!

RIPE NCC Days in Kyiv | 2019-09-25 | Alex Semenyaka

Step 7: upload our data

38

File format

Local
file

Table
structure

RIPE NCC Days in Kyiv | 2019-09-25 | Alex Semenyaka

Step 8: use our data together with Atlas

39

WITH netsplit AS (
 SELECT NET.IP_FROM_STRING(REGEXP_EXTRACT(netstr,r'([0-9a-fA-F\.:]+)/')) AS netaddr,
 SAFE_CAST(REGEXP_EXTRACT(netstr,r'/([0-9]+)\s*$') AS INT64) AS netmask
 FROM enog17.BY.prefixes AS networks
)
SELECT msm_id FROM
 netsplit INNER JOIN `ripencc-atlas`.measurements.ping as msmdata
 ON
 (msmdata.start_time > TIMESTAMP "2020-10-31 00:00:00+00")
 AND
 (
 (netsplit.netaddr = NET.IP_TRUNC(msmdata.src_addr_bytes, netsplit.netmask)) OR
 (netsplit.netaddr = NET.IP_TRUNC(msmdata.dst_addr_bytes, netsplit.netmask))
)
 GROUP BY msm_id

RIPE NCC Days in Kyiv | 2019-09-25 | Alex Semenyaka

Step 9: optimising queries

40

INSERT `enog17-295103`.BY.split (name,mask)
 WITH netsplit AS (
 SELECT NET.IP_FROM_STRING(REGEXP_EXTRACT(netstr,r'([0-9a-fA-F\.:]+)/')) AS netaddr,  
 SAFE_CAST(REGEXP_EXTRACT(netstr,r'/([0-9]+)\s*$') AS INT64) AS netmask
 FROM `enog17-295103`.BY.prefixes AS networks
)
 SELECT netaddr, netmask FROM netsplit;

SELECT msm_id FROM
 `enog17-295103`.BY.split AS netsplit INNER JOIN `ripencc-atlas`.measurements.ping as msmdata
 ON
 (msmdata.start_time > TIMESTAMP "2020-11-05 00:00:00+00")
 AND
 (
 (netsplit.name = NET.IP_TRUNC(msmdata.src_addr_bytes, netsplit.mask)) OR
 (netsplit.name = NET.IP_TRUNC(msmdata.dst_addr_bytes, netsplit.mask))
)
 GROUP BY msm_id

RIPE NCC Days in Kyiv | 2019-09-25 | Alex Semenyaka

Step 10: it happens

41

Limitations for the
free account

Unclear issue
with IPv6 addresses

RIPE NCC Days in Kyiv | 2019-09-25 | Alex Semenyaka

Step 10: first impressions

42

• Everything is still convenient and ready-to-use

• Real analysis can take a while

• Free account may be insufficient for the real work

• Issues with IPv6 addresses

• NCC part: measurement themselves have no data stamp
- Cannot filter out irrelevant ones

To sum up

RIPE NCC Days in Kyiv | 2019-09-25 | Alex Semenyaka

API pros and contras

• Pros
- The most mature, robust and universal approach
- The code is easily reusable in future

• Contras
- A researcher should know programming
- Complex logic of the code
- A researches has to deal with all corner cases and internal logic himself
- It takes a long time to prepare the final code

44

RIPE NCC Days in Kyiv | 2019-09-25 | Alex Semenyaka

Storage pros and contras

• Pros
- Easy to start
- Simple logic, a researcher deals with the measurement results directly

• Contras
- Data available only for the last month
- Parsing the files in the naive straightforward way can be extremely inefficient

• Body Level

45

RIPE NCC Days in Kyiv | 2019-09-25 | Alex Semenyaka

BigQuery pros and contras

• Pros
- Extremely powerful tool
- Can be easily integrated with other external tools
- Shared access, easy to use in a team

• Contras
- To use all opportunities of the platform, one should learn a lot
- Not free
- From the NCC side:
- has the beta status
- measurement timestamps are missing

46

Questions
asemenyaka@ripe.net

ENOG17 | Alex Semenyaka

