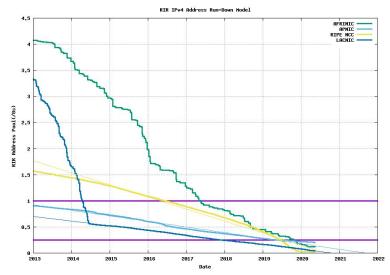
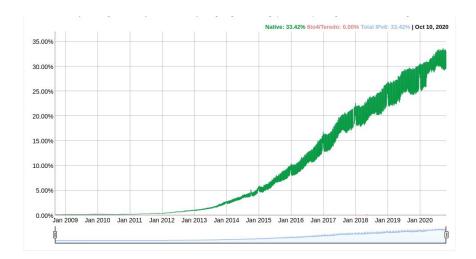
ENOG #17 2020-11-13

HIGH SPEED NAT64 WITH P4


IPv6 only HOSTING


Nico Schottelius

Motivation

Motivation: IPv4 depletion & IPv6 rise

- Only 0.39 /8s (or ca. 6.5 million IPv4 addresses) available world wide
- More than ¹/₃ IPv6 traffic at Google
- Need to bridge the gap

From https://ipv4.potaroo.net/, 2020-10-27

Key Technologies

IPv6 and IPv4

- IPv6 and IPv4 are incompatible
 - Ethernet type: 0x86dd vs. 0x0800
 - Address sizes: 128 Bit vs. 32 Bit
 - Header format
 - Checksum
- Translation methods
 - Higher level, protocol dependent ("proxying")
 - NAT64

0						1										2										3	
0 1 2 3	4 !	5 6	5 7	7 8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1
+-+-+-+	+-+-	-+-	-+-	-+-	+	+	-+	-+	+	-+	+	-+	-+	-+	-+	-+	-+	-+	+-+		+-+	+	+	+-+	+	-+	
Version	T:	raf	ffi	LC	Cla	ass	1						F	lc	W	La	be	1									
+-+-+	+-+-	-+-	-+-	-+-	+	+	-+	-+	+	-+	+	+	-+	-+	-+	-+	-+	-	+-+	-	+-+	+	+	+-+	+	-+	
Ľ	Pa	ayl	Loa	ad	Lei	ngt	h						Ne	xt	H	ea	de	r	1		F	lop	o :	Lin	nit	ŝ.	
+-+-+-	+-+-	-+-	-+-	-+-	+	-+	-+	-+	+	-+	+	-+	-+	-+	-+	-+	-+	-+	+-+		+-+	+	+	+-+	+-+	-+	
E																											
+																											
I.																											
+	Source Address																										
1																											
+																											
+-+-+-+	+-+-	-+-	-+-	-+-	+	-+	-+	-+		- +		-+	-+	- +	-+	-+	-+	-				+	+	+-+		-+	1
+																											
1							De	at		n+			Ad	2.	0.0	0											
5 10							DE	al	. 11	id l	(11	лц	μL		0											
+																											
		φ.			ñ		- 6			- 3				1									í	1-1			

Figure 2.4: IPv6 Header [17]

0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4	2 3 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-	
Version IHL Type of Servi	ce Total Length
+-	+-
Identification	Flags Fragment Offset
+-	+-
Time to Live Protocol	Header Checksum
+-	+-
Source	Address
+-	+-
Destinati	on Address
+-	+-
Options	Padding
+-	+-

Figure 2.5: IPv4 Header [43]

NAT64: Overview

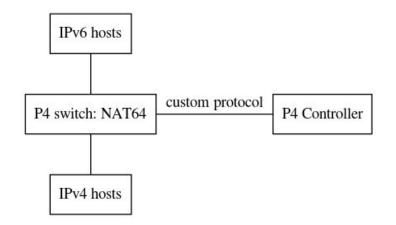
- Translation on IP level
- Steps
 - Adjust lower level (Ethernet) protocol
 - Change IPv4 <-> IPv6 headers
 - Adjust higher level (TCP/UDP/ICMP/ICMP6) protocol checksum

P4

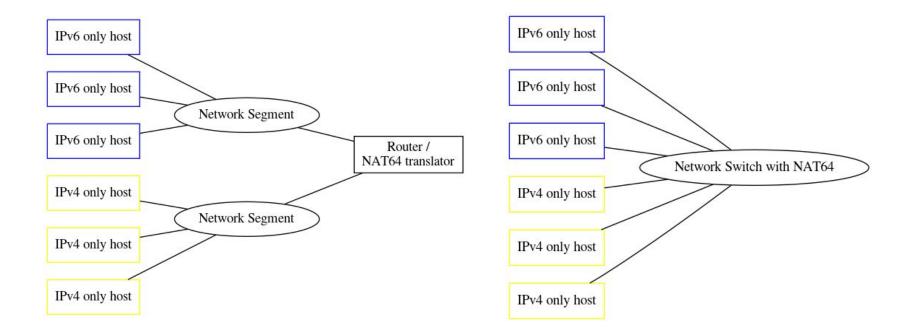
P4 Targets

• BMV2

- Software emulation
- Fast prototyping
- Checksum over payload support
- NetFPGA
 - P4->PX->HDL->Bitstream
 - Near line speed processing
 - No payload checksum support

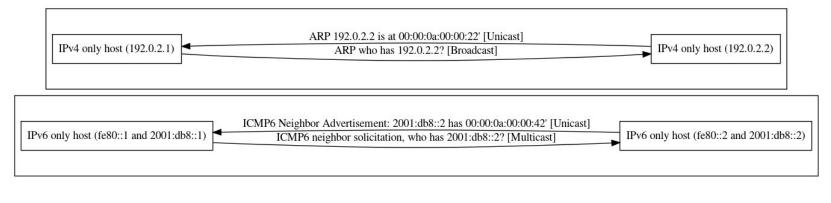

P4 Language

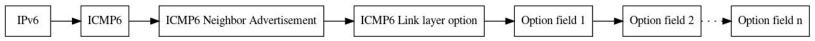
- Protocol independent
- Target independent: same code, different line speed
 - BMW2 and NetFPGA
- Parsing of well defined fields


	Ingress		Egress	
	Match-Action Pipeline		Match-Action Pipelin	e
Parser		tching lo		Deparser
	crossbar,	shared b	uffers,	

P4 NAT64 Design

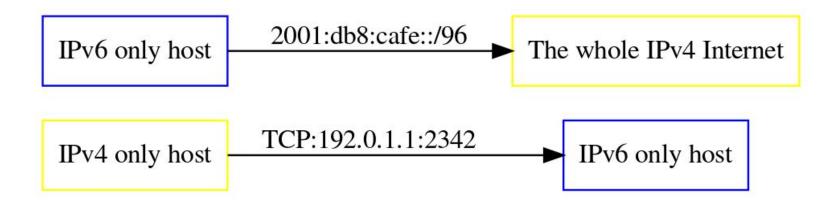
- Same P4 design for both targets
 - $\circ \quad \text{Same checksum code} \\$
- No functions on NetFPGA
 - Using #defines




P4 Network design: In-network translation

Address resolution: ARP/NDP

- IPv4: ARP: separate protocol; no checksum; Broadcast
- IPv6: NDP: IPv6 only; checksum; Multicast
- ICMP6 option list of 64 bit blocks



NAT64 Translation: From IPv6 to IPv4

- IPv6 host sends packet to 2001:db8:cafe::192.0.2.2
- P4 switch table matches on 2001:db8:cafe::/96 (nat64 prefix)
- P4 switch calls nat64 action
 - nat64 action adds IPv4 header, maps IPv6 source and destination address
 - nat64 action removes IPv6 header
- NAT64 P4 switch deparsers/sets egress port

NAT64 Translation: Directions matter

Stateless vs. Stateful NAT64

- Stateless
 - Usually 1:1 mappings
 - Static mappings
- Stateful
 - Usually 1:n mappings
 - Session table
 - Active controller required

NAT64: Checksum changes

- Used in TCP, UDP, ICMP, ICMP6
 - Includes payload
- P4/NetFPGA
 - No support for checksum over payload
- Internet checksum: "Sum of 1's complements"
 - Solution: Calculate differences

Delta Checksum in P4

Example: UDP: IPv6 to IPv4

- v4sum = v4_src_addr + v4_dst_addr + (totalen-20) + protocol
- v6sum = v6_src_addr + v6_dst_addr + payloadlen + next_header
- udpchecksum = udpchecksum + v4sum v6sum

```
action v6sum() {
                                                                      action v4sum() {
    bit < 16 > tmp = 0:
                                                                          bit<16> tmp = 0;
    tmp = tmp + (bit<16>) hdr.ipv6.src_addr[15:0];
                                                                          tmp = tmp + (bit<16>) hdr.ipv4.src_addr[15:0];
    tmp = tmp + (bit<16>) hdr.ipv6.src_addr[31:16];
                                                                          tmp = tmp + (bit<16>) hdr.ipv4.src_addr[31:16];
    tmp = tmp + (bit<16>) hdr.ipv6.src addr[47:32]:
                                                                          tmp = tmp + (bit<16>) hdr.ipv4.dst addr[15:0];
    tmp = tmp + (bit<16>) hdr.ipv6.src addr[63:48];
                                                                          tmp = tmp + (bit<16>) hdr.ipv4.dst addr[31:16];
    tmp = tmp + (bit<16>) hdr.ipv6.src_addr[79:64];
    tmp = tmp + (bit<16>) hdr.ipv6.src_addr[95:80];
                                                                          tmp = tmp + (bit<16>) hdr.ipv4.totalLen -20;
    tmp = tmp + (bit<16>) hdr.ipv6.src_addr[111:96];
    tmp = tmp + (bit<16>) hdr.ipv6.src addr[127:112];
                                                                          tmp = tmp + (bit<16>) hdr.ipv4.protocol;
    tmp = tmp + (bit<16>) hdr.ipv6.dst_addr[15:0];
                                                                          meta.v4sum = ~tmp;
    tmp = tmp + (bit<16>) hdr.ipv6.dst addr[31:16]:
    tmp = tmp + (bit<16>) hdr.ipv6.dst addr[47:32];
    tmp = tmp + (bit<16>) hdr.ipv6.dst_addr[63:48];
    tmp = tmp + (bit<16>) hdr.ipv6.dst_addr[79:64];
    tmp = tmp + (bit<16>) hdr.ipv6.dst addr[95:80]:
    tmp = tmp + (bit<16>) hdr.ipv6.dst addr[111:96];
    tmp = tmp + (bit<16>) hdr.ipv6.dst addr[127:112];
    tmp = tmp + (bit<16>) hdr.ipv6.payload_length;
    tmp = tmp + (bit<16>) hdr.ipv6.next header:
```

```
action delta_udp_from_v6_to_v4()
{
    delta_prepare();
    bit<17> tmp = (bit<17>) hdr.udp.checksum + (bit<17>) meta.v4sum;
    if (tmp[16:16] == 1) {
        tmp = tmp + 1;
        tmp[16:16] == 0;
    }
    tmp = tmp + (bit<17>) (0xffff - meta.v6sum);
    if (tmp[16:16] == 1) {
        tmp = tmp + 1;
        tmp[16:16] == 0;
    }
    hdr.udp.checksum = (bit<16>) tmp;
}
```

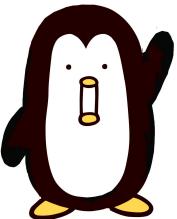
Results

Results: NAT64 TCP Benchmark

• Measured and tested with iperf

Тауда	2.35-3.34 Gbit/s							
Jool	7.18-8.25 Gbit/s							
P4/NetFPGA	8.51-9.29 Gbit/s							

Performance measurements with iperf, 190 seconds, 10 second warmup time, 1-50 parallel sessions, 3 repetitions; min / max values shown


Conclusion and outlook

- NAT64 successfully implemented on 2 P4 targets
- Jool surprisingly fast
- P4/NetFPGA: research only target
- Many P4 improvements possible even a P4OS?

Want to follow up? You find me on

- https://IPv6.chat
- <u>ipv6@ungleich.ch</u>
- @nico:ungleich.ch (Matrix)
- @NicoSchottelius (Twitter)

THIS PENGUIN NEEDS IPv6.

