Practical Implementation of BGP Community with Geotags and Traffic Engineering based on Geotags

> Muhammad Moinur Rahman <u>moin@bofh.im</u>

WHOIS

- FreeBSD Developer/Conference Hopper/Repeat Offender
- Consultant
 - Network Systems and *NIX System Integration
 - Large Scale FreeBSD Deployment
 - Professional Paranoid

BGP routes with location information

- Routers don't have a builtin GPS device
- Need a process to manually Geocode it's route-origin
- Need to add a tag to the route objects or group of routes
- Answer : BGP Communities

BGP - Border Gateway Protocol

- An INTER-AS routing protocol
- Building a robust scalable network
- Customers can chose
 - How to exit the network
 - How to bring the return traffic
- But to give that control we need to make maximum utilization of

BGP Community

Cause

- •A scalable network needs them for its own use
 - \circ Be able to identify customers, transits, peers, etc
 - \circ To perform traffic engineering and export controls
 - \circ There is no other truly acceptable implementation
- •But customers love using them as well
 - \circ "Power user" customers demand high level of control.
 - \circ Having self-supporting customers doesn't hurt either.
 - \circ The more powerful you make your communities, the more work it will save you in the long run.

Controls and Caveats

•Exit Traffic

- You cannot decide
- Customer needs to decide
- \circ But you can help a little more the customer to decide

•Return Traffic

- \circ You can control
- \circ You can help the customer decide

Standard BGP Communities

- •RFC 1997 style communities are available for more than 20 years
 - Encodes a 32-bit value displayed as "16-bit ASN:16-bit Value" like "65535:65535"
 - \circ Was designed to simplify Internet Routing Policies
 - \circ Signals routing information between Networks so that an action can be taken
- Broad Support in BGP Implementation
- •Widely deployed and required by network Operators for Internet Routing

Only 4 BYTES really BITES

- •4-byte ASN was on the verge and eventually 4-byte ASN came in
- Now how can you fit a 4-byte ASN in a 16-bit field

 You cannot use 4-byte ASN with RFC 1997 Communities

 Internet routing communities for 4-byte ASNs were in dire need for nearly a decade

 \circ Parity and fairness so that everyone could use their own unique ASN

RFC 8092: BGP Large Community Attributes

Idea progressed rapidly from 1 quarter of 2016
First I-D in September 2016 to RFC on February, 2017
Final Standard, a number of implementation and tools developed as well

Large BGP Community : Encoding and Usage

- •A unique namespace for 2-byte and 4-byte ASNs

 \circ No namespace collision in between ASNs

- •Large communities are encoded as 96-bit quantity and displayed as "32-bit ASN:32-bit value:32-bit value"
- •Canonical representation is \$Me:\$Action:\$You

Large Community Implementation

- •BIRD
- •Cisco IOS-XR
- •Cisco IOS-XE
- Juniper
- Nokia
- •FRR

BGP Community Analysis - AS6453

• Accepts STANDARD Communities • NO_EXPORT, NO_ADVERTISE

Local Preference Adjustment

- \circ Accepts 70, 80, 90, and 110
- \circ Standard for Customer Routes 100
- \circ Standard for Peer Routes 90
- \circ Nothing defined for Transit Routes as they are a TRANSIT Free Operator
- Mitigation of DDoS attacks/ Remotely Triggered Blackhole Routes

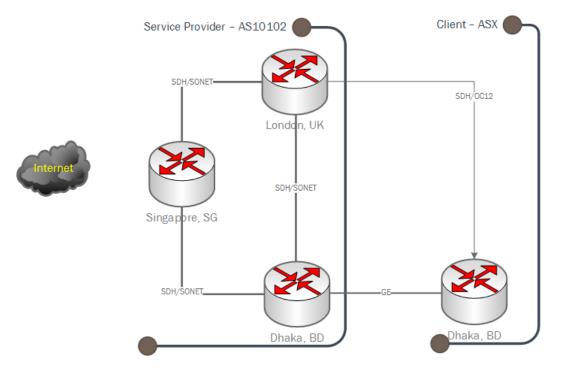
/32 prefixes can be blackholed with 64999:0(Uses PRIVATE number)

BGP Community Analysis - AS6453(Cont)

Distribution to PEERS

- \circ 6500n:ASN n={1,2,3} prepend 6453 n times to peer ASN
- \circ 65009:ASN do not redistribute to peer ASN
- \circ 65009:0 do not redistribute to any peers

Informational Community


- \circ Peer Routes classified as 6453:86
- \circ Nothing defined for Customer Routes
- \circ Nothing defined for Transit Routes as they are transit free operator
- \circ Geographical Information encoded within 4 characters with limited visibility

Problems faced by Service Provider

Customer Requires

- 1. Inbound Load Balancing
- 2. Upstream's outbound traffic is preferring more expensive links
- 3. Upstream outbound traffic is preferring a higher latency/ packet loss link
- 4. Traffic is not returning network efficiently (shortest/best path)
- 5. Return traffic load balancing due to cost/latency or Multiple geographical connectivity with same Transit Provider
- 6. Remotely Triggered Blackhole Route

Problem 1 : Inbound Load Balancing

Problem 1 : Details

- •Client has multiple connectivity
- To ensure Redundancy
- •Advertising same prefixes in both links
- Downstream traffic is received by both links
- •Client wants to specify specific link for incoming traffic

Solution 1: Inbound Load Balancing

- •Changing the Local Preference on one link
- •But Local Preference does not travers across different AS
- •Upstream needs to change the Local Preference while configuring BGP inbound route policy
- •But Upstream can set Local Preference based on conditional BGP community check

Solution 1: Inbound Load Balancing :: Upstream IOS-XR

route-policy CUSTOMER-IN if community matches-any (10102:75) then set local-preference 75 elseif community matches-any (10102:85) then set local-preference 85 elseif community matches-any (10102:95) then set local-preference 95 elseif community matches-any (10102:105) then

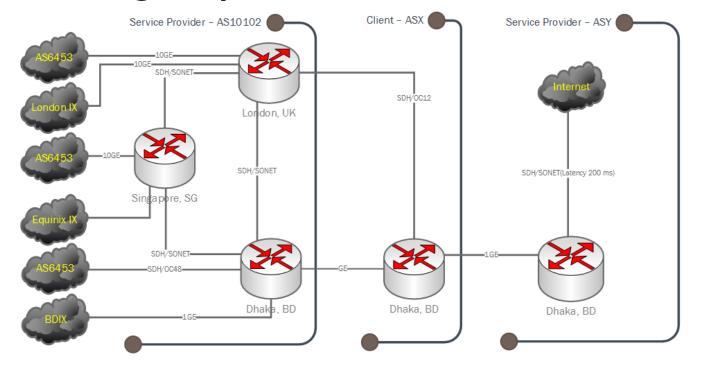
set local-preference 105

else

done

endif

end-policy


Solution 1: Inbound Load Balancing :: Upstream IOS

ip community-list 1 permit 10102:75 ip community-list 2 permit 10102:85 ip community-list 3 permit 10102:95 ip community-list 4 permit 10102:105 route-map CUSTOMER-IN permit 10 match community 1 set local-preference 75 route-map CUSTOMER-IN permit 20 match community 2 set local-preference 85 route-map CUSTOMER-IN permit 30 match community 3 set local-preference 95 route-map CUSTOMER-IN permit 40 match community 4 set local-preference 105

Solution 1: Inbound Load Balancing :: Customer IOS :: London Link

route-map AS10102-OUT-LONDON permit 1000
set community 10102:{75,85,95,105}

Problem 2: Outbound Traffic Preferring Expensive Links

Problem 2: Details

- Customer has Multiple upstreams
- Upstream AS10102 has connectivity with EQUINIX IX Singapore, London IX, BDIX
- Upstream ASY has no connectivity with any IX for Public Peering or Private peering. Only transit connectivity through another upstream
- ASY inbound routes are won in Customer's Router whereas AS10102 has so many better routes through IXP
- AS10102 provided BGP Communities for identifying Transit Routes, Private Peering Routes, Public Peering Routes and Customer Routes
- AS10102 defines different Local Preference for different routes

Problem 2 - Links - Types

- Transit
- Peers
 - $\circ \, \textbf{Public}$
 - \circ Private
- Customers

Problem 2 - Links - Types - Transit

- •The network operator pays money (or *settlement*) to another network (Transit Provider) for Internet access (or *transit*)
- Pays Money
- Costliest

Problem 2 - Links - Types - Peers

Public

- \circ Two networks exchange traffic between their users freely, and for mutual benefit
- Connected at a public Internet eXchange Point like LINX, DE-CIX(Commercial), AMS-IX, NL-ix
- \circ Internet eXchange Point charges a nominal fee for equipment financing and maintenance
- \circ Less Costlier than transit

Private

- Same as public except the two networks connectivity takes place privately
- Only link costs are involved
- \circ Less Costlier than Public Peering

Problem 2 - Links - Types - Customer

- A network pays another network money to be provided with Internet access
- •You are earning money
- •No Costs involved as we are generating revenue

Problem 2 - Links - Budget Decision

- •Customer Routes are the least expensive so Customer Routes should have higher preference
- Private Peering Routes are more expensive than Customer Routes so these should have lesser preference
- Public Peering Routes are more expensive than Private Peering Routes so these should have lesser preference
- •Transit Routes are most expensive so these should have the least preference

Solution 2: Outbound Traffic Preferring Expensive Links

Upstream has two tasks

- \circ Setting Local preference
 - Transit Local Preference 90
 - Public/Private Peering Local Preference 95
 - Client Local Preference 100

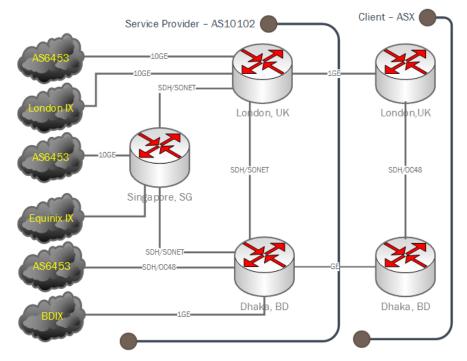
• Setting BGP Community to isolate routes

- Transit Routes 1st digit of 2nd octet is 1 (10102:1XXXX)
- Public/Private Peer Routes 1st digit of 2nd octet is 2/3 (10102:2XXXX/ 10102:3XXXX)
- Client Routes 1st digit of 2nd octet is 4 (10102:4XXXX)
- \circ Define GeoTAGS

Solution 2: Outbound Traffic Preferring Expensive Links :: Upstream IOS-XR :: DHAKA

route-policy CUSTOMER-IN set community 10102:41011 additive end-policy route-policy PRIVATE-PEER-IN set community 10102:31011 additive set local-preference 90 end-policy route-policy PUBLIC-PEER-IN set community 10102:21011 additive set local-preference 90 end-policy route-policy TRANSIT-IN set community 10102:11011 additive set local-preference 80 end-policy

Solution 2: Outbound Traffic Preferring Expensive Links :: Customer


- Upstream has defined optimized outbound routing
- •But customer has to route selective traffic upto upstreams router
- •Local Preference rests to vendor neutral default value across AS

Solution 2: Outbound Traffic Preferring Expensive Links :: Customer IOS ip community-list 100 permit 10102:[2-3].{4}

ip community-list 100 permit 10102:[2-3]. ip community-list 101 permit 10102:1.{4} route-map AS10102-IN permit 10 match community 100 set local-preference 90 route-map AS10102-IN permit 20 match community 101 set local-preference 80 route-map ASY-IN permit 10

```
set local-preference 80
```

Problem 3 - Outbound Traffic Preferring Higher Latency Links

Problem 3 - Outbound Traffic Preferring Higher Latency Links

- •Customer Routes are traversing through Higher Latency/Ping Loss Links
- •Customer is connected with AS10102 in multiple location (Dhaka & London)
- Customer's AP destined traffic from Dhaka is traversing High Latency London Router then going to Singapore
- Customer's EU destined traffic from Dhaka is traversing High Latency Singapore Router then going to London
- Customer's AP destined traffic from London is traversing High Latency Dhaka Router then going to Singapore

Solution 3: Outbound Traffic Preferring Higher Latency Links

- •Upstream is TAGGING routes based on it's origin as follows
 - \circ ASIAN region 2nd digit on 2nd octet is 1(10102:X1XXX)
 - AFRICAN region 2nd digit on 2nd octet is 2(10102:X2XXX)
 - EUROPEAN region 2nd digit on 2nd octet is 3(10102:X3XXX)
 - \circ NORTH AMERICAN region 2nd digit on 2nd octet is 4(10102:X4XXX)
 - SOUTH AMERICAN region 2nd digit on 2nd octet is 5(10102:X5XXX)
 - AUSTRALIAN region 2nd digit on 2nd octet is 6(10102:X6XXX)
 - ANTARCTICA region 2nd digit on 2nd octet is 7(10102:X7XXX)

Solution 3: Outbound Traffic Preferring Higher Latency Links :: UPSTREAM IOS-XR :: DHAKA

Peer Configuration

route-policy SETCMTY-PEER
set community 10102:21011 additive
end-policy

Transit Configuration

route-policy SETCMTY-TRANSIT
 set community 10102:11011 additive
 end-policy

\circ Client configuration

route-policy SETCMTY-CUSTOMER set community 10102:41011 additive end-policy

Solution 3: Outbound Traffic Preferring Higher Latency Links :: UPSTREAM IOS-XR :: SINGAPORE

• Peer Configuration

route-policy SETCMTY-PEER set community 10102:21021 additive end-policy

• Transit Configuration

route-policy SETCMTY-TRANSIT
set community 10102:11021 additive
end-policy

• Client configuration

```
route-policy SETCMTY-CUSTOMER
set community 10102:41021 additive
end-policy
```

Solution 3: Outbound Traffic Preferring Higher Latency Links :: UPSTREAM IOS-XR :: LONDON

• Peer Configuration

route-policy SETCMTY-PEER
set community 10102:23011 additive
end-policy

• Transit Configuration

route-policy SETCMTY-TRANSIT
set community 10102:13011 additive
end-policy

Client configuration

```
route-policy SETCMTY-CUSTOMER
set community 10102:43011 additive
end-policy
```

Solution 3: Outbound Traffic Preferring Higher Latency Links :: Customer :: London :: IOS

ip community-list 100 permit 10102:[1-5]1.{3}

ip community-list 101 permit 10102:[1-5]3.{3}

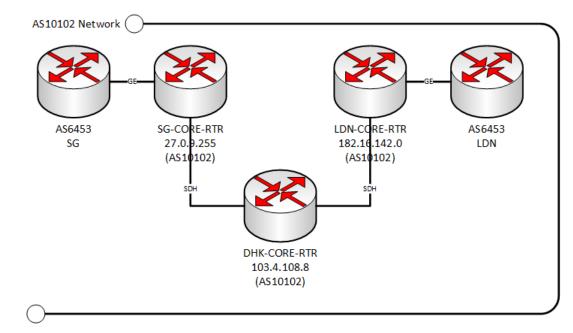
- route-map AS10102-IN permit 10
- match community 101
- set weight 1000
- route-map ASCUSTOMER-IN permit 10

```
match community 100
```

set weight 1000

Solution 3: Outbound Traffic Preferring Higher Latency Links :: Customer :: Dhaka :: IOS

ip community-list 100 permit 10102:[1-5]1.{3}


ip community-list 101 permit 10102:[1-5]3.{3}

- route-map AS10102-IN permit 10
- match community 100
- set weight 1000
- route-map ASCUSTOMER-IN permit 10

```
match community 101
```

```
set weight 1000
```

Solution 3: Outbound Traffic Preferring Higher Latency Links :: Real Life Example :: Scenario

Solution 3: Outbound Traffic Preferring Higher Latency Links :: Real Life Example

- •This has been a debate where it really gives added advantage
- •AS10102 is using this sort of setup
- •AS10102 thinks this gives better result

Solution 3: Outbound Traffic Preferring Higher Latency Links :: Real Life Example

- •6453:3000 AP Region
- •6453:2000 EU Region

Case1 : 1.0.4.1 (BGP Community 6453:3000)

Path #4: Received by speaker 0
Advertised to update-groups (with more than one peer):
 0.3 0.9 0.16 0.21 0.29
Advertised to peers (in unique update groups):
 103.4.108.138 103.4.109.170 103.4.109.134
9498 7545 56203
 125.23.197.26 from 125.23.197.26 (203.101.87.173)
 Origin IGP, localpref 90, valid, external, best, group-best, importcandidate
 Received Path ID 0, Local Path ID 1, version 369496799
 Community: 6453:3000 10102:11000 10102:11011

Origin-AS validity: not-found

Case1 : 1.0.4.1 (Default BGP Table TraceRoute)

Sun Dec 14 21:49:24.004 UTC Type escape sequence to abort. Tracing the route to 1.0.4.1 1 125.17.2.53 45 msec 45 msec 2 125.62.187.113 436 msec 447 msec 448 msec any2ix.coresite.com (206.72.210.141) 621 msec 622 msec 607 msec 3 203-29-129-130.static.tpgi.com.au (203.29.129.130) 615 msec 614 msec 613 msec 4 203-29-140-110.static.tpgi.com.au (203.29.140.110) 613 msec 620 msec 617 msec 5 203-29-140-110.static.tpgi.com.au (203.29.140.110) 612 msec 619 msec 623 msec 6 * * * 7 * * * 8 9 * * * 10 * * *

11 203-26-30-91.static.tpgi.com.au (203.26.30.91) 632 msec * *

Case1: 1.0.4.1 (via London)

Sun Dec 14 21:56:45.596 UTC

Type escape sequence to abort.

Tracing the route to 1.0.4.1

- 1 182.16.142.13 175 msec 168 msec
- 2 if-3-1-1.core4.LDN-London.as6453.net (195.219.51.85) 167 msec 168 msec 173 msec
- 3 if-0-1-3-0.tcore2.LDN-London.as6453.net (80.231.62.25) [MPLS: Label 614247 Exp 0] 324 msec 318 msec 316 msec
- 4 if-15-2.tcore2.L78-London.as6453.net (80.231.131.117) 324 msec 335 msec
- 5 if-20-2.tcore2.NYY-New-York.as6453.net (216.6.99.13) [MPLS: Label 467080 Exp 0] 321 msec 319 msec 321 msec
- 6 * * *
- 7 if-1-2.tcore1.PDI-Palo-Alto.as6453.net (66.198.127.5) [MPLS: Label 353936 Exp 0] 317 msec 317 msec 319 msec
- 8 if-2-2.tcore2.PDI-Palo-Alto.as6453.net (66.198.127.2) [MPLS: Label 344256 Exp 0] 320 msec 319 msec 319 msec
- 9 if-5-2.tcore2.SQN-San-Jose.as6453.net (64.86.21.1) 317 msec 316 msec 316 msec

10 64.86.21.58 516 msec

- 11 syd-sot-ken-crt1-be-10.tpgi.com.au (203.219.35.1) 532 msec
- 12 203-29-140-110.static.tpgi.com.au (203.29.140.110) 565 msec 565 msec 556 msec
- 13 203-29-140-110.static.tpgi.com.au (203.29.140.110) 537 msec 545 msec 545 msec
- 14 203-26-30-91.static.tpgi.com.au (203.26.30.91) 530 msec 530 msec

Case1: 1.0.4.1 (After route-policy)

Sun Dec 14 21:54:55.800 UTC

Type escape sequence to abort.

Tracing the route to 1.0.4.1

- 1 if-0-9-0-2.core01.PSB-Dhaka.lasiacom.net (27.0.9.18) 88 msec 95 msec
- 2 ix-0-1-3-565.tcore1.SVQ-Singapore.as6453.net (120.29.215.25) 91 msec 91 msec 88 msec
- 3 if-20-2.tcore2.SVW-Singapore.as6453.net (180.87.96.22) 118 msec *
- 4 if-1-2.tcore1.HK2-Hong-Kong.as6453.net (180.87.112.1) 116 msec 117 msec 116 msec
- 5 116.0.67.34 233 msec 235 msec 233 msec
- 6 203-29-129-193.static.tpgi.com.au (203.29.129.193) 244 msec 243 msec 265 msec
- 7 203-29-140-110.static.tpgi.com.au (203.29.140.110) 287 msec 264 msec 252 msec
- 8 203-29-140-110.static.tpgi.com.au (203.29.140.110) 251 msec 252 msec 252 msec
- 9 * * *
- 10 * * *
- 11 203-26-30-91.static.tpgi.com.au (203.26.30.91) 259 msec * *

Case1: 1.0.4.1 (ROUTE-POLICY)

```
route-policy AS10102-IN
  if source in (27.0.9.255) and (community
matches-any AS6453-AP) then
    set weight 2000
else
    done
  endif
end-policy
```

Case2 : 1.8.52.1 (BGP Community 6453:2000)

Path #1: Received by speaker 0 Advertised to update-groups (with more than one peer):

0.3 0.9 0.16 0.21 0.29

Advertised to peers (in unique update groups):

103.4.108.138 103.4.109.170 103.4.109.134

6453 38345, (aggregated by 38345 209.58.75.66), (Received from a RR-client), (received & used)

27.0.9.255 (metric 10) from 27.0.9.255 (27.0.9.255)

Origin IGP, localpref 90, valid, internal, best, group-best, import-candidate Received Path ID 0, Local Path ID 1, version 377221249

Community: 6453:50 6453:1000 6453:1100 6453:1112 10102:11000 10102:11020 10102:11021

Case2 : 1.8.52.1 (Default BGP Table TraceRoute)

Sun Dec 14 22:24:20.319 UTC

Type escape sequence to abort.

Tracing the route to 1.8.152.1

1 if-0-7-1-2.core01.EDC-Singapore.lasiacom.net (27.0.9.6) 90 msec 89 msec

2 ix-0-1-3-565.tcore1.SVQ-Singapore.as6453.net (120.29.215.25) 87 msec 87 msec 88 msec

3 if-20-2.tcore2.SVW-Singapore.as6453.net (180.87.96.22) [MPLS: Label 702807 Exp 0] 293 msec 294 msec *

4 if-2-2.tcore1.SVW-Singapore.as6453.net (180.87.12.1) [MPLS: Label 383568 Exp 0] 291 msec 292 msec 292 msec

5 if-6-2.tcore2.TV2-Tokyo.as6453.net (180.87.12.110) [MPLS: Label 722261 Exp 0] 305 msec 303 msec 303 msec

6 if-2-2.tcore1.TV2-Tokyo.as6453.net (180.87.180.1) [MPLS: Label 475028 Exp 0] 306 msec 305 msec *

7 if-9-2.tcore2.PDI-Palo-Alto.as6453.net (180.87.180.17) 313 msec 305 msec

8 if-2-2.tcorel.PDI-Palo-Alto.as6453.net (66.198.127.1) [MPLS: Label 338135 Exp 0] 303 msec 304 msec 304 msec

9 if-1-2.tcore1.NYY-New-York.as6453.net (66.198.127.6) [MPLS: Label 747619 Exp 0] 305 msec 303 msec 305 msec

10 if-4-0-0.msel.NW8-New-York.as6453.net (216.6.90.42) 307 msec 306 msec 306 msec

11 ix-9-5.msel.NW8-New-York.as6453.net (209.58.75.66) 302 msec 303 msec 302 msec

12 gns1.zdnscloud.net (1.8.152.1) 306 msec 304 msec 304 msec

Case2: 1.8.52.1 (After route-policy)

Sun Dec 14 22:22:00.881 UTC

Type escape sequence to abort.

Tracing the route to 1.8.152.1

1 182.16.142.13 168 msec 167 msec

2 if-3-1-1.core4.LDN-London.as6453.net (195.219.51.85) 187 msec 195 msec 199 msec

3 if-2-3-1-0.tcore1.LDN-London.as6453.net (80.231.76.122) [MPLS: Label 506579 Exp 0] 183 msec 172 msec

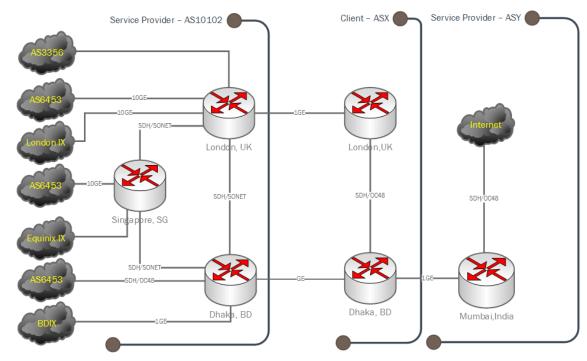
4 if-17-2.tcore1.L78-London.as6453.net (80.231.130.129) [MPLS: Label 412885 Exp 0] 172 msec 173 msec *

5 if-11-2.tcore2.SV8-Highbridge.as6453.net (80.231.139.41) [MPLS: Label 441702 Exp 0] 173 msec 172 msec 186 msec

6 if-0-3-6-5.thar2.HW1-London.as6453.net (195.219.101.49) 172 msec

7 ibercom-gw.as6453.net (195.219.101.38) 172 msec 172 msec 175 msec

8 gns1.zdnscloud.net (1.8.152.1) 172 msec 171 msec 172 msec


Case2: 1.8.52.1 (ROUTE-POLICY)

route-policy AS10102-IN if source in (182.16.142.0) and (community matches-any AS6453-EU) then set weight 2000 else done endif end-policy

Solution 3: Outbound Traffic Preferring Higher Latency Links :: Real Life Example :: Results In both cases:

- •Lower latency
- Lower hop count
- •Better performance

Problem 4: Return Traffic is not exiting network efficiently

Problem 4: Return Traffic is not Exiting Efficiently

- Customer is Connected with AS10102 in Dhaka & London
- Customer is also connected with ASY in Dhaka
- Customer is advertising same prefixes across all upstream from both the routers
- Customers Dhaka destined traffic from London Router(AS10102) is coming through Customer's London Router instead of Upstream's Dhaka Router
- Customers London destined traffic from Dhaka Router(AS10102) is coming through Customer's London Router instead of Upstream's Dhaka Router
- Customer cannot change Local Preference. Changing it causes all it's traffic routed via ASY

Solution 4: Return Traffic is not exiting network efficiently

- •Changing Local Preference in any side might force Customer's all traffic to come through ASY
- •Changing Local Preference in any side might result in AS10102's transit routes to win over Customer's route
- •Safest attribute to handle is MED(Multi Exit Discriminator)
- •Lower the metric value; more preferable the route is

Solution 4: Return Traffic is not exiting network efficiently :: Upstream :: IOS-XR

route-policy CUSTOMER-IN

if community matches-any (10102:4000) then set metric 0

else

done

endif

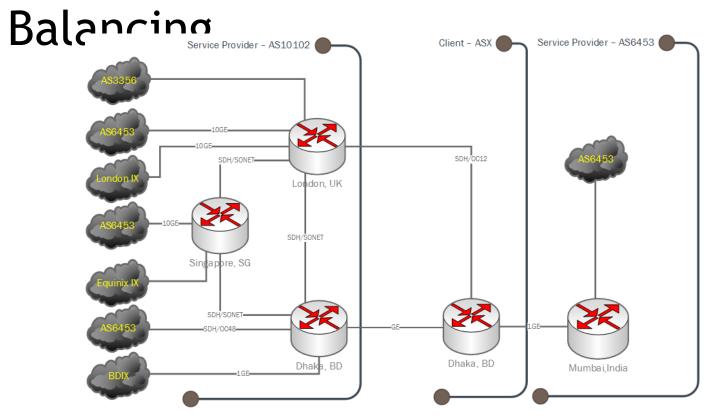
end-policy

Solution 4: Return Traffic is not exiting network efficiently :: Customer :: IOS :: London

ip prefix-list LONDON ..

ip prefix-list DHAKA ..

- route-map AS10102-OUT-LONDON permit 10
- match ip address prefix-list LONDON
- set community 10102:4000
- route-map AS10102-OUT-LONDON permit 20
 match ip address prefix-list DHAKA


Solution 4: Return Traffic is not exiting network efficiently :: Customer :: IOS :: Dhaka

ip prefix-list LONDON ..

ip prefix-list DHAKA ..

- route-map AS10102-OUT-DHAKA permit 10
- match ip address prefix-list DHAKA
- set community 10102:4000
- route-map AS10102-OUT-DHAKA permit 20
 match ip address prefix-list LONDON

Problem 5: Return Traffic Load

Problem 5: Return Traffic Load Balancing

- •Customer is connected with AS10102 and AS6453 in both London and Dhaka
- •AS6453 is Tire-1 Provider whereas AS10102 is not
- As Customer has direct connectivity with AS6453; Customer doesn't want it's AP AS6453 return traffic from Dhaka router(AS10102) to come through AS10102 only except last resort
- •Customer doesn't want EU return traffic from AS6453 via AS10102 as they have better latency through other tertiary provider

Solution 5: Return Traffic Load Balancing

- •Customer will use AS10102 for transit to AS6453 AP region as the last resort
- •Customer's prefix has to be AS path prepended to AS6453 in AP region
- •Customer prefix has not to be advertised to AS6453 EU region but to other upstream and peers

Solution 5: Return Traffic Load Balancing

•AS10102 has community for

- \circ AS path-prepend once (10102:1CTP)
- \circ AS path-prepend twice (10102:2CTP)
- AS path-prepend thrice (10102:3CTP)
- Do not redistribute (5CTP)
 - C = {0..7}
 - 0 Globally
 - 1-7 Region Code
 - TP Provider code
 - 00 Globally
 - 01 AS6453
 - 02 AS3356

Solution 5: Return Traffic Load Balancing :: Upstream :: IOS-XR :: Dhaka

```
route-policy PROCCMTY-AS6453-OUT
if community matches-any (10102:1001, 10102:1101) then
    prepend as-path 10102 1
    elseif community matches-any (10102:2001, 10102:2101) then
    prepend as-path 10102 2
    elseif community matches-any (10102:3001, 10102:3101) then
    prepend as-path 10102 3
    elseif community matches-any (10102:5000, 10102:5001, 10102:5101) then
    drop
    else
    done
    endif
end-policy
```

Solution 5: Return Traffic Load Balancing :: Upstream :: IOS-XR :: Singapore

if community matches-any (10102:1001, 10102:1101) then
 prepend as-path 10102 1
 elseif community matches-any (10102:2001, 10102:2101) then
 prepend as-path 10102 2
 elseif community matches-any (10102:3001, 10102:3101) then
 prepend as-path 10102 3
 elseif community matches-any (10102:5000, 10102:5001, 10102:5101) then
 drop
 else
 done
 endif
end-policy

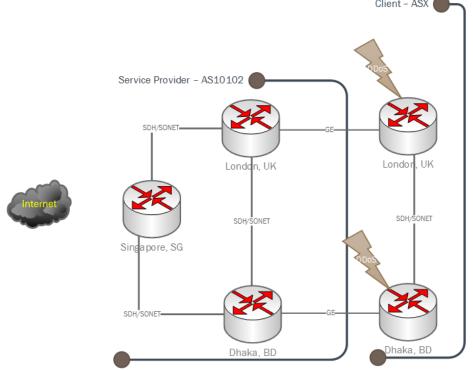
Solution 5: Return Traffic Load Balancing :: Upstream :: IOS-XR :: London

route-policy PROCEMTY-AS6453-00T if community matches-any (10102:1000,10102:1001, 10102:1301) then

prepend as-path 10102 1
elseif community matches-any (10102:2000, 10102:2001, 10102:2301) then
prepend as-path 10102 2
elseif community matches-any (10102:3000, 10102:3001, 10102:3301) then
prepend as-path 10102 3
elseif community matches-any (10102:5000, 10102:5001, 10102:5301) then
drop

else

done


endif

end-policy

Solution 5: Return Traffic Load Balancing :: Customer :: IOS

route-map AS10102-OUT permit 10
match <CLAUSE>
set community 10102:3101 10102:5301

Problem 6: Remotely Triggered BlackHole Route

Problem 6: Remotely Triggered BlackHole Route

- •Client suddenly starts facing massive DDoS attacks
- •All of Client's backbone links are saturated
- •Client needs to let the upstream know about the IP
- Upstream will NULL route that specific IP

Solution 6: Remotely Triggered BlackHole Route

- •Customer is facing DoS or DDoS
- •Customer has to let it's upstream or upstream's upstream know about the destination address
- AS10102 has community for

 \circ Remotely Triggering Blackhole Route (10102:0)

Solution 6: Remotely Triggered BlackHole Route :: Upstream :: IOS-XR

interface Null 0 ipv4 unreachables disable route-policy black-hole router static if tag eq 66 then address-family ipv4 unicast set local-preference 200 192.0.2.0/32 Null0 set origin iqp router bgp 10102 set next-hop 2001:db8:0:ff::abcf address-family ipv4 unicast redistribute static route-policy black-hole set community (no-export) route-policy CUSTOMER-IN else if community matches-any (10102:0) then drop set tag 66 endif set local-preference 200 end-policy set origin igp set next-hop 192.0.2.0 set community (no-export) endif

end-policy

Solution 6: Remotely Triggered BlackHole Route :: Customer :: IOS

ip route 10.10.10.10 255.255.255.255 null0 router bqp 65535 address-family ipv4 unicast network 10.10.10.10 mask 255.255.255.255 ip prefix-list BLACKHOLE 10.10.10.10/32 route-map AS10102-OUT permit 1000 match ip address prefix-list BLACKHOLE set community 10102:0

Designing Internal Community : Practical consideration

- Most routers parse BGP communities as strings rather than integers, using Regular Expressions.
 - \circ Design your community system with this in mind.
 - \circ Think strings and character positions, not numbers.
 - For Example, 10102:1234 can easily be parsed as
 - Field #1, Value 1
 - Field #2, Value 23
 - Field #3, Value 4
 - \circ But can't easily be parsed numerically
 - For example as "larger than 1233".

• Remember not to exceed 65535 as a 16-bit value. (65536 options) to represent

• Carried across AS

Types of Implementation

•Practical BGP Communities Implementation can essentially be classified into two types:

Informational tags

• Communities set by and sent from a provider network, to tell their customers (or other interested parties) something about that route.

•Action tags

 Communities set by and sent from a customer network, to influence the routing policies of the provider network

Alter route attributes on demand

• Both globally and within own network

• Control the import/export of routes

Informational tags

Information communities typically focus on

- \circ Where the route was learned
 - AKA Geographic data (continent, country, region, city, etc in short geotag)
- \circ How the route was learned
 - AKA Relationship data (transit, peer, customer, internal, etc)
- \circ There is no other good way to pass on this data

•This data is then used to make policy decisions

- \circ Either by you, your customer, or an unknown third party.
- Exporting this data to the Internet can provide invaluable assistance to third party networks you may never even know about. This is usually a good thing for everyone.

Ways to encode Information

•Encode simple arbitrary data

 \circ Each network defines its own mapping

Which must be published somewhere like ASN description in IRR for others to use

• Ex: Continent (1 = Asia, 2 = Africa, etc)

• Ex: Relationship (1 = Transit, 2 = Public Peer, etc)

•Standards based encoding

 \circ Ex: ISO 3166 encodes Country Codes into 3 digits

• M.49 UN format for numerical CC(Useful for Large BGP Community)

Providing information

- •As always, the exact design decision depends on specific network and footprint.
- •Networks in only a few major cities may want to focus on enumerating those cities in a short list.
- •Networks in a great number of cities may want to focus on regional aggregation specific to their scope.
- Plan for the future!
 - Changing community design after it is already being used by customers may prove impossible.

Practical Use of Informational Tags

- •Make certain that Informational Tags from your Action Tags can easily be distinguished
- •Ex: Make Informational Tags always 5 characters in length, and action tags to be 4 characters or less.
- This allow to easily match Info tags: "10102:.{5}"
- Filter communities from neighbors
 - None is allowed to send Informational tags, these should only be set by Service Provider, and these should be stripped from all BGP neighbors (customers, transits, peers, etc).
 - \circ Otherwise there is a massive security problem.

Providing Information

•For example: 10102:TCCCP

- T Type of Relationship
- C Continent Code
- CC Country Code
- P POP Code

•The community 10102:21021 could be parsed as:

- \circ Public Peer
- $\circ \text{Asia}$
- $\circ \, \text{Singapore}$
- \circ Equinix

Definitions - Types

•Type of routes

- \circ 1XYYP Transit/Upstream
- O 2XYYP Public Peer
- \circ 3XYYP Private Peer
- \circ 4XYYP Customer
- \circ 5XYYP Internal

Definitions (Contd)

Continents

- $\circ\,\text{T1YYP}$ Asia
- $\circ\,\text{T2YYP}$ Africa
- $\circ\,\text{T3YYP}$ Europe
- \circ T4YYP North America
- $\circ\,\text{T5YYP}$ South America
- T6YYP Australia
- T7YYP Antarctica

Definitions (Contd)

Countries

- \circ T101P Bangladesh
- $\circ\,\text{T102P}$ Singapore
- $\circ\,\text{T201P}$ United Kingdom
- $\circ\,\text{T202P}$ France
- $\circ\,\text{So on}$.

Definitions (Contd)

• PoP

- \circ T1011 Central NOC
- $\circ\,\text{T1021}$ Singapore Global Switch
- $\circ\,\text{T1022}$ Singapore Equinix
- T2011 United Kingdom Telehouse North
- T3011 United States TelX

 $\circ\,\text{So}$ on . .

Providing Access to Action

• Remotely Triggered Blackhole Route ° 10102:0

• Changing Local Preference

- o 10102:75 (Lower than Transit Routes)
- o 10102:85 (Lower than Peer Routes/Higher than Transit Routes)
- 10102:95 (Lower than Customer Routes/Higher than Peer Routes)
- \circ 10102:105 (Higher than Customer Routes)

• Reset MED value

- 10102:4000 (Resets MED value to 0)
- \circ Another BGP attribute to prefer Main Link/Backup Link
- \circ If Local Preference is not a solution

Providing Access to Action(Cont)

• Applying NO_EXPORT (Keeping within AS) 0 10102:5000

Providing Access to Action(Cont)

- Redistribution to Other Peers/Transits
 - \circ 10102:5CTP (Do NOT Redistribute to Transit Provider/Peering ASN Code)
 - 10102:1CTP (Prepend 10102 once)
 - 10102:2CTP (Prepend 10102 twice)
 - 10102:3CTP (Prepend 10102 thrice)

Providing Access to Action(Cont)

•Where CTP Stands as follows

- $\circ\,\text{C}$ Region or Continent
 - 0 Globally
 - 1-7 As mentioned in Continents in previous
- \circ TP Transit Provider or Peering ASN Code
 - 00 Globally
 - 01 TATA Communications (AS6453)
 - 02 Level3 Communications (AS3356)
 - 03 Cogent (AS174)
 - 04 Bharti Airtel (AS9498)
 - ∎ etc

Caveats

- RFC 4384 : BGP Communities for Data Collection (BCP 114)
- •Uses a similar approach but in bit levels
- •For community matching we have to consider numerical value rather than strings (Only IOS-XR and Junos supports matching numerical Community Ranges)
- •No space for Action communities unless we use extended communities
- •Can point only upto Country Level Geolocations not city or PoP like this

References

- 1. Using Communities for Multihoming (<u>http://bgp4all.com/ftp/isp-workshops/</u> <u>BGP%20Presentations/09-BGP-Communities.pdf</u>)
- 2. BGP Techniques for Internet Service Providers Philip Smith
- 3. BGP Communities: A guide for Service Providers Richard A. Steenbergen & Tom Scholl
- 4. RFC 8195: Use of Large BGP Community (Closest to match this tutorial if you have 4byte ASN)