PACKET DESIGN

Role of Machine Learning in Network Monitoring and Automation Cengiz Alaettinoglu

Machine-Learning Analytics Empowers Network Automation

Network Automation Service Provider Trials

- 1. Provisioning assured bandwidth service paths
 - No RSVP or SR tunnels
- 2. Provisioning service paths
 - Various constraints
 - Segment routing (SR-TE)
- 3. Proactive service restoration
 - Link failure prediction
 - Critical services are rerouted before failure

- 4. On-demand traffic engineering
 - Multiple fiber cuts cause congestion and call drops
 - On-demand tunnels are created for alleviating congestion
- 5. On-demand multi-layer traffic engineering
 - Optimizing at the IP/MPLS layer alone still leaves some congestion
 - New optical paths are signaled and LAGs are reconfigured to add capacity to the IP/MPLS layer

Why Automate?

- Medium-size service provider has 6% of its RSVP-TE tunnels down
 - Due to race conditions after link failures
- 1200 down tunnels is too many for any operator to figure out the root cause
 - If these tunnels are for traffic engineering, can we really say we are successfully doing traffic engineering?
 - It is time for software/DevOps to manage the network?

Machine Learning

- Applications
 - Autonomous driving, natural language processing, classification, recommender systems, anomaly detection, prediction, clustering, self-customization, database mining, handwriting recognition, ...
- Algorithms
 - From simple linear regression to deep neural networks
 - Neural networks are not new; however, access to large data sets and huge compute resources are now available and are responsible for recent attention
 - Very popular in 1980s; stagnated until recently
- It is not necessarily good at
 - Magic many algorithms require supervision
 - Telling what it learned
 - It is not always accurate; Siri doesn't get me. I can't even read my own handwriting...

Machine Learning

- \circ Trends
 - E.g. Detecting an optical interface card failure
- Normal vs abnormal anomaly detection
 - BGP route hijacking
- Clustering
 - Subscriber behavior analysis
- Recommender Systems
 - Find similar past behaviors

1. Assured Bandwidth Service Paths

- Service provider wants to offer a portal where customers can request assured bandwidth service paths
- o Can the network assure the service?
 - Cannot disrupt current services; i.e. it cannot cause congestion
- Shortest paths only
 - No existing tunnels, nor plans to introduce tunnels

Path Computation

- Computing the shortest path is easy
- Checking the interface utilizations along the shortest path is not sufficient
 - What happens tonight when the traffic peaks?
 - Or over the course of the week?
 - What happens when a link fails?

Role of Machine Learning

- With nothing learned, all requests are accepted
 - Very high probability of causing congestion for many requests
- With just the real-time network demands and paths learned
 - Very low probability of causing congestion in short term
 - High probability of causing congestion later
- With week-long network demands and paths are learned
 - Very low probability of causing congestion now or later
- Why stop at a week?
 - Traffic has both diurnal and weekly patterns
 - Networks evolve new routers, new applications; better to forget at some point
- Why not use neural networks here?

2. Intent Based Service Paths

Intent: provide subscribers paths with various service requirements

- Low-delay paths for financial enterprises
- Bandwidth-guaranteed paths for fat flows for broadcasters
- Diverse paths for full redundancy
- Geo-constrained paths for sensitive data
- "Pay what you use" on-demand, on-the-fly paths

Subscribers

Cola, Pepsi, Red Bull,...

• Paths

- LA to NY low-delay path for Cola
- Path may be non-shortest using RSVP-TE and SR-TE

Service Creation

Map Dashboard	s Technologies Se	rvices Planning Reports Admin	All - Search	٩
Service Catalog		Status Provisioning L2VPN Service Catalog L3VPN Subscribers Transport	✓ 2017/05/27 03:20:2	29 - 2017/05/28 04:30:29 PDT Go Live
Service	Category	Description	Priority *	Subscribers
Sovereign	Transport	Exclude Chicago routers	1. Gold	2
DiversePE	Transport	Source And Destination PE Diverse Paths	1. Gold	1
DiversePath	Transport	Node and Link protected path	1. Gold	2
LowDelay	Transport	Low Delay Service	2. Silver	2
4 records				First Previous 1 Next Last

Diverse Path Creation Example

3. Proactive Service Restoration

• Optical interface cards generate heat and eventually fail

- The CRC error rate increases as the card degrades
 - This behavior can be learned
- Service provider wants to proactively reroute critical services away from degrading equipment

Self-Driving Network Trial

Device	Interface	Errors		
FK-P-141	10.67.10.141(Fa4/0)	1733		
DFW-P-132	fe-0/3/3	924		
ORD-P-122	10.68.12.122(Fa1/0)	281		
ORD-P-122	10.67.7.122(Fa3/0)	63		
DFW-P-132	fe-0/2/1	8		
2017/10/17 10:46:53 - 2017	//10/17 11:16:53	Show All	Page 1	>

- Performance Explorer detects link errors
 - Orchestrator is notified
- Orchestrator requests new paths for critical services
 - New policy: "Exclude the problem link"
- Path Provisioning application re-computes new paths avoiding the problem links
- Orchestrator reconfigures routers

Role of Machine Learning

• CRC error rates are baselined for anomaly detection

- Need to be careful as there are no CRC errors when idle
- The growth in CRC error rate can be detected
 - Normalization
- Why not use a neural network here?
 - Really good match for the problem

Neural Networks

- o Input layer
 - The pixel values of the image
- Hidden layers
- Output layer
 - Probability of a heart attack
 - Age of the person
 - BMI
 - Smoker or not
 - Whether has high blood pressure

- Training data set: 300,000 retinal images and expected outputs
 - Coefficients are determined by bestmatching the training set
- Test data set: 13,600 retinal images and expected outputs
 - 70% accurately predicted
 - 72% is the medical accuracy rate with a blood test

Optical Interface Failure

- Input layer: 5-minute CRC error rate for the last 30 days
- Output layer: probability of a failure in next 1 hour, 1 day, 1 week, 1 month
- Hidden layers: start with 2 layers and check the results if more needed
- Training data set
- Test data set

1980s All Over Again

- Algorithm yes
- Access to compute power yes
- Large data sets not yet
 - In the dataset:
 - 48 link failures over the week
 - 12 links
 - Only one link stayed down for more than one hour
 - 9 interfaces with significant CRC errors, including this link

4. On-demand Traffic Engineering

- Congestion caused by fiber cuts
 - Normally the network is run uncongested
- Traditional optimization algorithms are too slow
 - NP-Complete
 - Take hours to compute
- Packet Design congestion-avoidance algorithm runs in seconds
 - Polynomial time

SOLUTIONS PRODUCTS ABOUT RESOURCES

XL Axiata Deploys Packet Design Explorer SDN Traffic Engineering Application to Assure Network Services

Octobe	r 10, 2017
Wireles technol	s service provider optimizing Its network using SDN analytics and automation agy
telecom deploye mobile Carrier	Texas – October 10, 2017 – XL Axiata, one of Indonesia's leadir munications service providers covering 90 percent of the country's population, h d Packet Design technologies to ensure optimum service delivery over its IP/MPI and core networks. XL Axiata chose the Packet Design Explorer Suite, including SDN analytics and automation capabilities, to improve troubleshooting, automa igneering to avoid link congestion, and mitigate risk as it expands and rolls out ne

SDN Traffic Engineering Application

 Toriffic Matricus E start
 Polocy UE Start

 02.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01

<u>Topologies</u> Real-time physical or virtual Link delay/loss/jitter Baselines Anomalies Alerts <u>Traffic Matrices</u> Service aware Peak or current traffic levels Full-mesh or tactical <u>Network Policies</u> Under-/over-provision Optimization criteria Resiliency requirements Etc.

Policies

<u>TE Recommendations</u> Add, delete, merge, split tunnels

Programming SDN controllers Orchestrators

Closed loop: analytics & policy-based recommendations, provisioning, monitoring

PHYSICAL & VIRTUAL ROUTERS, SWITCHES & NETWORK FUNCTIONS

Copyright ©2017-18 Packet Design LLC. All rights reserved.

Traffic Demands and Network Conditions

SDN Traffi	c Engi	neering	 ✓ 2018/03/22 02:26:06 - 2018/0 	13/22 02:56:06 PDT
Traffic Matrix	Business	• Pol	y: 450MbSplit •	
100	0+%		12 ms Link Utilization	
Max Link U			3 ■ Unknown (0 LINKS) ■ <45% (7 LINKS) ■ 45-65% (2 LINKS) ■ 66-85% (0 LINKS) ■ >85% (3 LINKS) Max Hops ⊕	
Show All -			~	
STEEDEN	east-edge	south-edge	the second seco	
west-edge	850M	50M		
north-edge	50M	400M	1 ma, 50.00% 10 ma, 135.00% 1 ma, 47.50%	
south-edge	50M		north-edge nw-core ne-core south-edge	
150.00M				

TE Saves 60% Capacity

nnel Recommendations						02:26:06 - 2018/03/22	02:56:06 PDT	Gol
ffic Matrix: Business Policy: Minimum Tunn	iels -							
e After	Before 12 ms Aft	ter 12 ms		Link Utilization				
\frown	Max Delay 🕕			Before				
100+% 48%				Unknown (D LINKS)	<45% (7 LINKS) 645-65% (2 LINKS) 66-85% (0 LINKS)	>85% (3 LINKS)	
\cup	Before 3 After 3 Max Hops ①			After				
nk Utilization	max hops 🖯			Unknown (0 LINKS)	<45% (15 LINKS) - 45-65% (7 LINKS) 66-85% (0 LINKS)	>85% (0 LINKS)	
Recommendations								
	er: 🗡 ဝ							
		ail end Ho	ps Reserved B/W	Recommendation	Description			
tecommendations - Filt	Head end Ta	ail end Ho ast-edge	ps Reserved B/W 3 425.000M	Recommendation Add Tunnel		imumTunnels_10.5.0.10	00 Shov	v Map
Recommendations Filt Tunnel Business_MinimumTunnels_10.5.0.100	Head end Ta west-edge ea				Signaled Name: Business_Min			
Tunnel Business_MinimumTunnels_10.5.0.100	Head end Ta west-edge ea west-edge ea	ast-edge	3 425.000M 3 425.000M 3 400.000M	Add Tunnel	Signaled Name: Business_Min Signaled Name: Business_Min	imumTunnels_10.5.0.10	00_0 Show	w Map
Filt Tunnel Business_MinimumTunnels_10.5.0.100 Business_MinimumTunnels_10.5.0.100 Business_MinimumTunnels_10.5.0.100 Business_MinimumTunnels_10.5.0.100 Business_MinimumTunnels_10.5.0.100_1	Head end Ta west-edge ea west-edge ea north-edge so west-edge so	ast-edge ast-edge outh-edge outh-edge	3 425.000M 3 425.000M 3 400.000M 3 50.000M	Add Tunnel Add Tunnel Add Tunnel Add Tunnel	Signaled Name: Business_Min Signaled Name: Business_Min Signaled Name: Business_Min Signaled Name: Business_Min	imumTunnels_10.5.0.10 imumTunnels_10.5.0.10 imumTunnels_10.5.0.10	00_0 Shov 00 Shov 00_1 Shov	w Map w Map w Map
Recommendations Filt Tunnel Business_MinimumTunnels_10.5.0.100 Business_MinimumTunnels_10.5.0.100 Business_MinimumTunnels_10.5.0.100 Business_MinimumTunnels_10.5.0.100 Business_MinimumTunnels_10.5.0.100	Head end Ta west-edge ea west-edge ea north-edge so west-edge so	ast-edge ast-edge outh-edge	3 425.000M 3 425.000M 3 400.000M 3 50.000M 3 50.000M	Add Tunnel Add Tunnel Add Tunnel	Signaled Name: Business_Mir Signaled Name: Business_Mir Signaled Name: Business_Mir Signaled Name: Business_Mir Signaled Name: Business_Mir	imumTunnels_10.5.0.10 imumTunnels_10.5.0.10 imumTunnels_10.5.0.10 imumTunnels_10.5.0.10	00_0 Show 00 Show 00_1 Show 00 Show	w Map w Map w Map
Tunnel Filt Business_MinimumTunnels_10.5.0.100 Business_MinimumTunnels_10.5.0.100 Business_MinimumTunnels_10.5.0.100 Business_MinimumTunnels_10.5.0.100 Business_MinimumTunnels_10.5.0.100 Business_MinimumTunnels_10.5.0.100 Business_MinimumTunnels_10.5.0.100 Business_MinimumTunnels_10.5.0.100	Head end Ta west-edge ea west-edge ea north-edge so west-edge so south-edge we	ast-edge ast-edge outh-edge outh-edge	3 425.000M 3 425.000M 3 400.000M 3 50.000M 3 50.000M 3 50.000M 3 50.000M	Add Tunnel Add Tunnel Add Tunnel Add Tunnel	Signaled Name: Business_Mir Signaled Name: Business_Mir Signaled Name: Business_Mir Signaled Name: Business_Mir Signaled Name: Business_Mir Signaled Name: Business_Mir	imumTunnels_10.5.0.10 imumTunnels_10.5.0.10 imumTunnels_10.5.0.10 imumTunnels_10.5.0.10 imumTunnels_10.5.0.10	00_0 Show 00 Show 00_1 Show 00_1 Show 00_0 Show 00_0 Show	v Map v Map v Map v Map v Map v Map
Tunnel Business_MinimumTunnels_10.5.0.100 Business_MinimumTunnels_10.5.0.100_0 Business_MinimumTunnels_10.5.0.100 Business_MinimumTunnels_10.5.0.100_1 Business_MinimumTunnels_10.5.0.100	Head end Ta west-edge ea west-edge ea north-edge so west-edge so south-edge we north-edge ea	ast-edge ast-edge buth-edge buth-edge rest-edge	3 425.000M 3 425.000M 3 400.000M 3 50.000M 3 50.000M	Add Tunnel Add Tunnel Add Tunnel Add Tunnel Add Tunnel	Signaled Name: Business_Mir Signaled Name: Business_Mir Signaled Name: Business_Mir Signaled Name: Business_Mir Signaled Name: Business_Mir Signaled Name: Business_Mir	imumTunnels_10.5.0.10 imumTunnels_10.5.0.10 imumTunnels_10.5.0.10 imumTunnels_10.5.0.10 imumTunnels_10.5.0.10	00_0 Show 00 Show 00_1 Show 00_1 Show 00_0 Show 00_0 Show	w Map w Map w Map w Map

5. On-Demand Multi-Layer Traffic Engineering

- Traffic engineering at the IP/MPLS layer
 - IP rerouting is faster than optical in sub-seconds
 - Optimization algorithm must work in seconds also, not hours
- Optimizing at the IP/MPLS layer alone may not always succeed
 - Especially with fiber cuts
- Optical network is slow but can help
 - Capacity of some optical paths can be adjusted
 - Flex-Ethernet, liquid-spectrum, partial restoration at the optical layer
 - New optical transport paths can be signaled

IP/MPLS and Optical Topology Correlation

Multi-Layer Traffic Engineering

- It is possible to re-engineer the IP links/ports and optical service paths
 - However, optical rerouting is destructive and takes ~5 minutes
- Re-engineer unused ports
 - Ports of the failed links are unused
 - Look for under-utilized link aggregation groups (LAGs)
- Create new IP links between these ports
 - Only where capacity is needed
 - Coordinate IP and optical network changes to avoid packet drops

Multi-Layer Traffic Engineering

- Role of IP layer
 - Identify the new layer 3 path
 - Identify how much capacity is needed and where
- Role of optical layer
 - Repurpose an optical port on ROADM
 - Signal two new paths

- Role of orchestrator
 - Coordinate the two pieces
 - Add new IP links to the LAGs

Role of Machine Learning

- Many traffic patterns can be learned
 - Traffic matrices with neural networks
 - http://ieeexplore.ieee.org/document/7849067/
 - https://arxiv.org/pdf/1711.02833.pdf
 - DDoS
 - Traffic anomaly detection
 - Peering traffic optimization

• .

BGP Route Hijacking

- Happens too often
 - BGP makes you (in)famous
- Ontil we can protect the routing system, we need automatic detection and fast restoration
- Baselining BGP routes helps

BGP Route Baselines

Baselines

 \cap

- Origin AS
- Neighbor AS
- 2nd hop AS
- BGP next hop

• Alerting

Concluding Remarks

- Network analytics empower many service provider use cases
- Network trends and anomalies can be machine learned; some failures can be predicted
- Self-driving network can reroute around congestion and move critical services away from failing equipment
- Correlating IP and optical layers provides a more holistic self-driving network

