Your First Steps to IPv6 Announcements

A hands-on tutorial

M. Stucchi & N. Trenaman | 9 October 2017 | ENOG14
Agenda

• Getting your IPv6 Addresses
• Configuring Interfaces & Loopbacks
• Creating a Route6 object
• MP-BGP explained
• Setting up a Transit
• Setting up Peering
• Filtering Best Practices
Getting Your IPv6 Addresses
Getting an IPv6 allocation

• To qualify, an organisation must:
 - Be an LIR
 - Have a plan for making assignments within two years

• Minimum allocation size /32
 - Up to a /29 without additional justification
 - More if justified by customer numbers and network extension
 - Additional bits based on hierarchical and geographical structure, planned longevity and security levels
Getting IPv6 PI address space

- To qualify, an organisation must:
 - Meet the contractual requirements for provider independent resources
 - LIRs must demonstrate special routing requirements

- Minimum assignment size: /48

- PI space can not be used for sub-assignments
 - not even 1 IP address!
Where to get your IPv6 Addresses

Welcome to the RIPE NCC LIR Portal

News

RIPE NCC General Meeting May 2016
21 April 2016
You can now register to attend and vote at the RIPE NCC General Meeting (GM) on 25 May 2016. At the GM, members will vote on resolutions such as the Charging Scheme for 2017 and there will be an Executive Board election.

Once you log in, go to the GM Preferences section in the ‘My LIR’ section of the portal. From here you can register to attend in person or remotely and choose to vote by paper ballot or electronically.

RIPE NCC General Meeting November 2015
27 October 2015
You can now register to attend (in person or remotely) and vote at the RIPE NCC General Meeting (GM) on 18 November 2015. At the GM, members will discuss the RIPE NCC Activity Plan and Budget 2016 and vote on resolutions such as redistribution of the RIPE NCC’s 2015 surplus. Once you log in, go to the GM Preferences section in the portal. From here you can register your attendance and voting preferences.

RIPE NCC General Meeting May 2015

You can now register to attend (in person or remotely) and vote at the RIPE NCC General Meeting (GM) on 25 May 2015. At the GM, members will discuss the RIPE NCC Activity Plan and Budget 2015 and vote on resolutions such as redistribution of the RIPE NCC’s 2015 surplus. Once you log in, go to the GM Preferences section in the portal. From here you can register your attendance and voting preferences.
How to get your IPv6 Allocation

What would you like to request?

- IPv6 Addresses
- IPv4 Addresses
- ASN (Autonomous System Number)
- IXP (Internet Exchange Point) Assignment

Continue

Not sure? Read the supporting notes.

What kind of IPv6 address space do you want to request?

- Please request an IPv6 allocation before requesting an IPv6 End User Site Assignment.

- IPv6 Allocation
 - IPv6 Provider Independent (PI) Assignment
 - Temporary IPv6 Provider Independent (PI) Assignment
 - IPv6 End User Site Assignment
 - IPv6 Anycast Assignment

Continue

Not sure? Read the supporting notes.
How to get your IPv6 Allocation

IPv6 Allocation Request

What IPv6 subnet size would you like?

/29

Specify the country in which the allocation will be announced

Search and select a country

Person with administrative responsibility (admin-c)

NT1031-RIPE

Person with technical responsibility (tech-c)

OPS4-RIPE

Do you already have an IPv6 range?

Enter IPv6 range

Maintainers, persons and roles are RIPE Database objects, click here to create them.

I confirm that I am going to make assignments and/or sub-allocations from the allocation, in accordance with the IPv6 Allocation and Assignment policy

I confirm that the network that will be using these Internet number resources has an active element in the RIPE NCC service region.

Continue
Your IPv6 Allocation - Example

inet6num:	2001:db8::/29
netname:	BY-ENOG-20170901
country:	BY
admin-c:	ADM321-RIPE
tech-c:	NOC123-RIPE
status:	ALLOCATED-BY-RIR
mnt-by:	RIPE-NCC-HM-MNT
mnt-lower:	BRANCH-OFFICE-MNT
notify:	noc@example.net
created:	2017-09-01T08:23:35Z
last-modified:	2017-09-01T08:23:35Z
source:	RIPE
Configuring interfaces and loopbacks
Addressing with IPv6

Where \(X \) is your number on the handout!

- Your allocation is 2001:ff\(XX::/32\)
- The point-to-point interface towards your transit has IPv6 address 2002:1\(XX::a/127\)
- The interface towards the IXP has address 2001:db8::\(XX/64\)
Network Diagram
Discover the Network

• Make sure you have connectivity

• Go to: http://workbench.ripe.net

• Your login and password are provided by the trainers

• Carefully read the instructions on the screen
Interface IPv6 Settings Routers

• Disable Router Advertisements
 - On point-to-point interfaces
 - On LANs where unprepared devices are connected

• Otherwise they will suddenly be globally reachable over IPv6 without being configured, prepared and/or protected
Basic IPv6 Settings

• Before configuring IPv6 on your router interfaces, the basic IPv6 settings need to be set up on the router

• For R1:

```
(config)#ipv6 unicast-routing
```
Interface IPv6 Settings (on R1)

- Configure IPv6 on your IXP interface

```
(config)# interface Gi2
(config-if)# ipv6 address 2001:db8::XX/64
(config-if)# no ipv6 redirects
(config-if)# ipv6 nd ra suppress all
```

- Configure IPv6 on your Transit interface

```
(config)# interface Gi1
(config-if)# ipv6 address 2002:1XX::a/127
(config-if)# no ipv6 redirects
(config-if)# ipv6 nd ra suppress all
```
Verify

• Check everything is working by pinging the other end of the point to point link for the transit

```
# ping 2002:1XX::b
```

• And by pinging another host on the IXP Lan

```
# ping 2001:db8::3333
```
Creating a route6 Object
Assignment

• Create a `route6` object for your announcement

• Data needed
 - Your AS number
 - Your IPv6 allocation
What Are route(6) Objects?

- **route(6)** objects register which IPv4/IPv6 prefix will be announced by which AS number
- Used for creating BGP filters

Router configuration

BGP Filters

From AS Number accept:
- IPv4 prefix
- IPv6 prefix

RIPE Database

<table>
<thead>
<tr>
<th>route:</th>
<th>IPv4 prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>origin:</td>
<td>AS Number</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>route6:</th>
<th>IPv6 prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>origin:</td>
<td>AS Number</td>
</tr>
</tbody>
</table>
Registering IPv6 Routes

inetnum: 2002:ff30::/32

- **mnt-by:** TEST-NCC-HM-MNT
- **mnt-by:** SM30-MNT

aut-num: AS65530

- **as-name:** BLULEIGHT30
- **mnt-by:** SM30-MNT

route6: 2002:ff30::/32

- **origin:** AS65530
- **mnt-by:** SM30-MNT
Preparation

• Create RIPE Access account (access.ripe.net)
• Using your number on the handout, identify your IPv6 allocations in RIPE TEST Database
• Find out your AS Number using the same method
• Find out the name and password of your maintainer object
Create route(6) Objects

- Open a browser and go to:
 - http://apps-test.db.ripe.net

- On the left side, click on “Create an object”

- Choose “route6” and click on [Create]

- Fill in the template:
 - Maintainer: CMXX-MNT
 - route6: 2001:ffXX::/32
 - origin: AS1XX

- The password will be provided by the trainers
MP-BGP
BGP Overview

- Routing Protocol used to exchange routing information between networks
 - Exterior Gateway Protocol

- It is based on Path Vector Protocol
 - Similar to Distance Vector

- Each border router sends to its neighbors the full route to one destination, not just the distance
Autonomous Systems

- Collection of networks with the same routing policy
- Usually under single ownership and administrative control
 - Single routing policy
- Identified by 16 or 32 bit numbers
 - 16bit: 0 - 65,535
 - 32bit: 65,536 - 4,294,967,295
AS Path

• Sequence of ASes a route has traversed
 - Loop detection
 - Path selection (AS-PATH length)
BGP Modes

- **eBGP**: Between BGP speakers in a different AS

- **iBGP**: Between BGP speakers within the same AS
BGP Messages

- OPEN
 - opens the tcp session

- KEEPALIVE
 - keeps the session running

- NOTIFICATION
 - error handling

- UPDATE
 - actual route updates (NLRI, AS-path, AS-path attributes)
Multiprotocol BGP (MP-BGP)

• Extension to the BGP protocol
• Carries routing information about other protocols:
 - Multicast
 - MPLS VPN
 - IPv6
• Multi-Protocol NLRI exchange is negotiated at session set up (OPEN Message)
MP-BGP

- New features in OPEN Message:
 - BGP Capabilities Advertisement:
 - Address Family Identifier (AFI)
 - Subsequent Address Family Identifier (SAFI)
 - Multiprotocol Reachable Network Layer Reachability Information
AFI / SAFI

• Address Family Identifier (AFI)
 - Identifies Address Type
 - AFI = 1 (IPv4)
 - AFI = 2 (IPv6)

• Subsequent Address Family Identifier (SAFI)
 - Sub category for AFI Field
 - Address Family Identifier (AFI)
 • Sub-AFI = 1 (NLRI is used for unicast)
 • Sub-AFI = 2 (NLRI is used for multicast RPF check)
 • Sub-AFI = 3 (NLRI is used for both unicast and multicast RPF check)
 • Sub-AFI = 4 (label)
 • Sub-AFI = 128 (VPN)
MP-BGP Capabilities Negotiation

- BGP routers establish peering sessions through the OPEN message
- OPEN message contains optional parameters
- BGP session is terminated if OPEN parameters are not recognised
- A new optional parameter: CAPABILITIES containing its capabilities:
 - Multiprotocol extension (AFI/SAFI)
 - Route Refresh
 - Outbound Route Filtering
Managing Multiple Protocols

• Independent operation
 - One RIB per protocol
 - Distinct policies per protocol (IP address specific route maps and prefix lists must be adjusted)
 - Make separate route maps for IPv4 and IPv6
 - Prefix lists are always separate
 - It is common to use a -v4 and a -v6 suffix to names
Setting up your Transit
Assignment

• Enable Multiprotocol BGP
• Using IPv6
 - Connect your network to the Transit Provider
• Data needed
 - Your AS number
 - Your IPv6 address space
 - The AS number of your neighbors
 - The IPv6 address of your neighbors BGP routers
Preparation

- Insert static Null route

 - Before BGP advertised its network, it checks for an exact match of network number and mask on router’s routing table

  ```
  (config)# ipv6 route 2001:ffXX::/32 null0 250
  ```
Enable Multiprotocol BGP

- Enable MP-BGP

```
(config)# router bgp 1XX
(config-router)# no bgp default ipv4-unicast
(config-router)# bgp router-id 1XX.0.0.0
```
Create a filter

- BGP sends the best paths to all neighbours

(config)# ipv6 prefix-list TRANS-OUT-V6 seq 5 permit 2001:ffXX::/32
(config)# ipv6 prefix-list IXP-OUT-V6 seq 5 permit 2001:ffXX::/32
Configure Transit Session

- Configure BGP session with AS66

```
(config)# router bgp 1XX
(config-router)# neighbor 2002:1XX::b remote-as 66
(config-router)# address-family ipv6
(config-router-af)# neighbor 2002:1XX::b activate
(config-router-af)# neighbor 2002:1XX::b prefix-list TRANS-OUT-V6 out
```

- Advertise route

```
(config-router-af)# network 2001:ffXX::/32
```
Verify

• Check session summary

```bash
# show bgp ipv6 unicast summary
```

• Check BGP and routing table

```bash
# show bgp ipv6
# show ipv6 route
```

• Verify reachability

```bash
# ping 2001:3c00::abcd
# ping <your colleague IPv6>
```

• Show logged events

```bash
# show logging
```
Questions
Setting up your IXP peering
Internet Exchanges (IX or IXP)

• A switch (or set of switches) that allows members to exchange traffic **directly**
 - Meeting point through BGP peering

• Many countries have at least one
 - AMS-IX, LINX, VIX, MIX, etc
IXPs - Why

- IXPs enable traffic to remain local
 - Improves routing efficiency and fault-tolerance
 - Reduces the average per-bit delivery cost (no transit)
IXPs - Who

- Often non-profit, membership organisations
 - Cater to the local ISPs, Content Providers, Universities, Governments and others
IXPs - Architecture

• A switch, or a group of switches
 - Range is generally from 100Mb to 100Gb ports

• Switches are in colocation facilities
 - Easy to reach them
 - Can be spread in different facilities across a city or region

• Some IXes have two LANs for redundancy
IXPs - Route Servers

• A server running a BGP Daemon

• Helps networks who peer at many IXPs
 - Avoids setting up a meshed environment
 - Eases management
IXPs - Route Servers

- Sets **next-hop** as announcer, leaving itself out

- Traffic does not flow through the route server
Configure IXP Sessions

- Configure BGP sessions with AS127

```
(config)# ipv6 prefix-list AS127-IN-V6 permit 2001::ff27::/32
(config)# router bgp 1XX
(config-router)# neighbor 2001:db8::27 remote-as 127
(config-router)# address-family ipv6
(config-router-af)# neighbor 2001:db8::27 activate
(config-router-af)# neighbor 2001:db8::27 prefix-list IXP-OUT-V6 out
(config-router-af)# neighbor 2001:db8::27 prefix-list AS127-IN-v6 in
(config-router)# exit
```
Setting up your IXP Peers
BGP Peering at IXP

• Following the example BGP Session with AS127, set up BGP peerings with other participants in the room

• Remember:
 - Set up a prefix list first
 - Use the correct information (IP Address, AS Number)
 - Check for the BGP Session to come up

sh bgp ipv6 unicast summary
Filtering best practices
Filtering Principles

• Filter as close to the edge as possible
• Filter as precisely as possible
• Filter both source and destination where possible

• Two filtering techniques:
 - Explicit Permit (permit then deny any)
 - Explicit Deny (deny then permit any)
Bogons

• Routes you shouldn't see in the routing table
 - Private addresses
 - Non-allocated space
 - Reserved space (Future use, Multicast, etc.)

• You should have filters applied so that these routes are not advertised to or propagated through the Internet

• Team Cymru provides list or BGP feed
Prefix-lists

- Prefix lists are lists of routes you want to accept or announce
- Easy to use but not highly scalable
- You can create them manually or automatically
 - With data from RIPE DB or other Internet Routing Registry
- Or using a tool
 - Level3 Filtergen
 - bgpq3
 - IRRexplorer
Reverse Path Forwarding

• Called uRPF (Unicast Reverse Path Forwarding)

• Checks if an entry exists in the routing table before accepting the packet and forwarding it

• Two modes
 - Loose
 - Strict
Strict and Loose RPF

- **Strict**
 - Checks if the entry is in the routing table
 - and the route points to the receiving interface

- **Loose**
 - Simply checks that an entry exists for the route in the routing table
Best Current Practice 38

- Defines some steps to take in order to have a “cleaner” routing table
- Restricting forged traffic (TCP and UDP)
- Implies the use of:
 - Prefix filters
 - Bogon filters
 - uRPF

Ingress filters

- Best Practices:
 - Don’t accept BOGON ASNs
 - Don’t accept BOGON prefixes
 - Don’t accept your own prefix
 - Don’t accept default (unless you requested it)
 - Don’t accept IPv4 prefixes longer than /24
 - Don’t accept IPv6 prefixes longer than /48
 - Consider Net Police Filtering
Preparation

• Examine your routing table

```
# show ipv6 route bgp
# show bgp ipv6
```

• Do you see anything strange?
Filter More Specifics (on R1)

- Filtering of the prefixes that are too specific

```
(config)# ipv6 prefix-list TRANS-IN-V6 seq 10 permit 2000::/3 le 48
(config)# ipv6 prefix-list IXP-IN-V6 seq 10 permit 2000::/3 le 48
```
Filter More Specifics

• Add incoming policy to the transit

```
(config)# router bgp 1XX
(config-router-af)# address-family ipv6
(config-router-af)# neighbor 2002:1XX::b prefix-list TRANS-IN-V6 in
```

• For the BGP Peerings, we have already set up strict filtering
Clear the BGP Session

clear bgp ipv6 unicast 2002:1XX::b soft in
Verify

- Check BGP and routing table

```
# show bgp ipv6 unicast
# show ipv6 route | include /64
# show ipv6 route | include /56
# show ipv6 route | include /49
# show ipv6 route | include /52
```

- None of these should appear
Questions

nathalie@ripe.net
mstuccchi@ripe.net