

ENOG 14, Minsk, BY, 2017-10-10

1

http://slides.cabo.space

Prof. Dr.-Ing. Carsten Bormann, cabo@tzi.org

Carsten Bormann

Universität Bremen TZI IETF CoRE WG IRTF T2T RG

2

http://slides.cabo.space

TZi

RFC	RFC	RFC	RFC	RFC	RFC
2429	2509	2686	2687	2689	3095
RFC	RFC	RFC	RFC	RFC	RFC
3189	3190	3241	3320	3485	3544
RFC	RFC	RFC	RFC	RFC	RFC
3819	3940	3941	4629	5049	5401
RFC	RFC	RFC	RFC	RFC	RFC
5740	5856	5857	5858	6469	6606
RFC	RFC	RFC	RFC	RFC	RFC
6775	7049	7228	7252	7400	7959
RFC 8132	RFC 8138				

Universität Bremen

3

Bringing the Internet to new applications

 "Application X will **never** run on the Internet"

• "How do we turn off the remaining parts of X that **still** aren't on the Internet"?

Scale up: Number of nodes (xx billion by 2020)

Scale down:

node

Scale down: cost complexity

cent kilobyte megahertz

Constrained nodes: orders of magnitude 10/100 vs. 50/250 There is not just a single class of "constrained node" Class 0: too small to securely run on the Internet * "too constrained" Class 1: ~10 KiB data, ~100 KiB code "quite constrained", "10/100" Class 2: ~50 KiB data, ~250 KiB code "not so constrained", "50/250"

These classes are not clear-cut, but may structure the discussion and help avoid talking at cross-purposes

Internet of Things? IP = Internet Protocol

••IP iS important importantIP = Integration Protocol

IP: drastically reducing barriers

- **IP telephony** (1990s to 2018): replaced much of the special telephony hardware by routers and servers
 - several orders of magnitude in cost reduction
 - available programmer pool increases massively
 - What started as convergence, turned into conversion
- Everything is **not** the special snowflake it is said to be
- Now: Internet of Things

Hype-loT	Real IoT
IPv4, NATs	IPv6
Device-to-Cloud	Internet
Gateways, Silos	Small Things Loosely Joined
Questionable Security	Real Security
\$40+	< \$5
W	mW, μW

1 IoT: Current Deployment Models

• Device to cloud

- Add isolated nodes to existing LANs (e.g., WiFi)
- Lots of "ants" (v4: You might see this in your CGNs)
- v4: Reachability from outside requires keepalive (often UDP!)
- **Device to "gateway"**/hub (...to cloud)
 - Closer to other traffic we have today
 - Adds more periodic microflows to the mix
- **Device to device** ("thing-to-thing", general Internet connectivity)
 - (v4: Behind the NAT, or lots of hole punching needed)

[RFC 7452]

... a properly networked world ... could be safer, greener, more efficient and more 77 productive ... But in order for that to emerge, the system has to be designed in the way that the internet was designed in the 1970s – by engineers who know what they're doing, setting the protocols and technical standards that will bring some kind of order and security into the chaos of a technological stampede.

John Naughton, "The internet of things needs better-made things" (The Guardian, 2016-07-10)

IETF: Constrained Node Network WG Cluster

INT	LWIG	Guidance
INT	6LoWPAN 🖌	IP over 802.15.4
INT	6Lo	IP-over-foo
INT	6TiSCH	IP over TSCH
INT	5 LPWAN	Low-Power WAN Networks
RTG	ROLL	Routing (RPL)
APP	CoRE	REST (CoAP) + Ops
APP	CBOR	CBOR & CDDL
SEC	DICE 🖌	Improving DTLS
SEC	ACE	Constrained AA
SEC		Object Security

Technology

Traits

IEEE 802.15.4 ("ZigBee") **BlueTooth Smart DECT ULE ITU-T G.9959 ("Z-Wave")** 802.11ah ("HaLow") NFC **6lobac** IEEE 1901.2 (LF PLC) Ethernet + PoE WiFi, LTE, ... 18 Many SoCs, 0.9 or 2.4 GHz, 6TiSCH upcoming

On every Phone

Dedicated Spectrum, In every home gateway

Popular @home

Low power "WiFi"

N

4

GHz

Proximity Wired (RS485)

Reuses mains **power** lines

Wired, supplies 12–60 W

Power?

Application Layer Protocols

- CoRE: Constrained **REST**ful Environments: Replace HTTP by a less expensive equivalent (CoAP)
 - From special-purpose/siloed to general purpose
- ACE: Define Security less dependent on humans in the loop and on very fast upgrade cycles
 - Embrace the **multi-stakeholder** IoT

Application Layer Data Formats

- Industry move to **JSON** for data interchange
- Add **CBOR** where JSON is too expensive
- Use **JOSE** and **COSE** as the security formats
- Work on semantic interoperability (IRTF **T2TRG**), with W3C, OCF, OMA/IPSO (LWM2M), iot.schema.org, …
 → self-description

Reducing TCO:

Self-Description and Discovery

- Manually setting up 10¹¹ nodes is a non-starter
- Self-Description:

IoT nodes support automatic integration

- RFC 6690 /.well-known/core "link-format"
- W3C WoT work on "Thing Description" ongoing
- Semantic Interoperability!
- Discovery:

IoT nodes and their peers can find others

- /.well-known/core exposes resources of a node
- **Resource Directories** (with a bridge to DNS-SD)

IoT Devices as a secure application

Protect the objectives right vs. Protect the right objectives 55

Now let's apply all this to constrained devices

Shaping the Security Workflows

- Stakeholders, Principals
- Less-constrained nodes
- Constrained nodes
- Device Lifecycle
- Authorized, authenticated delegation

IoT Devices as an attack platform

USER duty garage?

5

IETF97 ISOC panel • Carsten Bormann caboOtzi.org

vendor duty CE • *regulation*? • UL

IETF97 ISOC panel • Carsten Bormann cabo@tzi.org

IETF97 ISOC panel • Carsten Bormann cabo@tzi.org

Manufacturer's Usage Description (MUD)

- Protect the network and other unrelated users against an IoT Device that may be insecure
- Idea: Document **expected behavior** in an actionable way
- MUD as standardized today: Can be used for **firewall** configuration
 - Poke firewall holes for desirable traffic
 - Detect when the IoT Device has been compromised

31

• Where can we take this idea?

Software Updates are needed

- Bugs are being found
- Environments change
- → Update or discard!
- Traditional: manual upgrade by connecting a special upgrader device (e.g., PC with upgrader app)
 - Too expensive; device might be hard to reach
- Needed: **Secure** Over-the-air Upgrade

If it is not **usably secure**, it's not the **Internet of Things**

