

SDN Traffic Engineering with Segment Routing The Next Evolution

Cengiz Alaettinoglu

- Minimize the worst link utilization
 - Alleviate traffic congestion
 - Better/longer use of equipment/port/fiber
- Route traffic around congested links
 - Put traffic on non-shortest paths

Evolution of Traffic Engineering

Offline traffic engineering

- Optimal, but not adaptive
- On-device traffic engineering
 - Adaptive, but not optimal
- Software defined networking
 - Best of both worlds, yet simpler; simplicity enabled by:
 - Segment routing
 - Push-based telemetry
 - SDN Traffic Engineering application

- Topology model
- Traffic demand matrix
- Optimization algorithm computes routes so that the worst link utilization is minimized
 - Linear programming

Pros/Cons of Offline Traffic Engineering

Very good link utilization values

- Network model is hard to keep accurate
- Traffic demand matrix is hard to compute
- Optimization algorithm is very slow
 - Hours to days
- Can not adapt to failures
- □ Too many tunnels (N²)
- Some paths may be surprisingly long

On-Device Traffic Engineering RSVP-TE/CSPF

- Routers flood available bandwidth of links in IGP
- Each router
 - Sets up one (or more) tunnels to other routers
 - Monitors the utilization of these tunnels (auto-bandwidth)
 - Triggers re-optimization when utilization changes
 - Uses CSPF (constraint-based shortest path first) to compute the paths
 - Signals the path and reserves bandwidth using RSVP

Not so good link utilization values

- Each router is selfish in optimization
- No network-wide optimization

- Network model is readily available
- Traffic demand matrix is easy with auto-bandwidth
- CSPF is fast
- □ Can adapt to failures
- Too many tunnels (N²)
- Some paths may be surprisingly long
- Flooding available bandwidth impacts
 IGP, particularly convergence time
- Race conditions after failures
 - Long-lived FRR
- RSVP-TE overhead is high due to N² tunnels
 - Protocol and management overhead

	Small	Medium	Large		
Routers	75	450	1,900		
Links	300	2,000	8,000		
Tunnels	1,600	20,500	132,000		

TUNNEL RESERVATION DISTRIBUTION

- Majority of the tunnels have very small amount of traffic
 - No TE needed

Link / Tunnel Distribution

LINK/TUNNEL DISTRIBUTION

Most links carry a small number of tunnels Small number of links carry a lot of tunnels

A Tunnel Path -Before, During and After a Link Failure

A wide-area link fails at 2015-12-27 12:04:05.200490
 It was carrying 327 tunnels from 22 head-end routers
 The tunnel above fails to optimize, but why?

Re-Optimization after Link Failure

•

- 22 head-end routers get a signal via RSVP-TE and try to re-optimize
 - Race to available bandwidth
- □ Each router optimizes for itself
 - It does not know what the other 21 routers need
 - It doesn't even know there are other routers/tunnels interested in this bandwidth
- 9 tunnels fail to optimize
 - 5 head-end routers
 - The example tunnel is one of the unlucky ones
- This could have been avoided with network-wide optimization!

What Happens to the Traffic?

- Traffic now takes the IGP path (green arrows)
- Tunnel needed 34Mbps which is not available anywhere in the network
- The IGP path too does not have this bandwidth available
 - Congestion kicks in

Another Tunnel is Stuck on its FRR

- What happens when a tunnel fails to optimize and it is FRR protected?
 - FRR is stuck
 - Usually no reservations are made on FRR paths
 - Congestion will kick in

N² Tunnels - Beyond Human Manageability

- It is not just 9 tunnels that are down
- 1204 down tunnels is too many for any operator to figure out the root cause
 - If these tunnels are for traffic engineering, can we really say we are successfully doing traffic engineering?
 - It is time for software/devops to manage the network

AN SDN APPROACH

Copyright © 2017 Packet Design. All rights reserved.

Real-time model

- Alleviate congestion, especially after a link failure
- Create as few tunnels as necessary
 - Very small signaling overhead
 - Very small IGP overhead
 - Do not want IGP dynamics due to available bandwidth changes
- Network-wide optimization
- Simple to deploy and operate

SDN Promises a Solution

- Segment routing (SR) replaces RSVP
 - Provides uncompromised functionality
 - Simple control plane with very low overhead
- Push-based telemetry for traffic matrices
 - YANG model based
 - Frees IGP
- SDN controller is part of the network control plane
 - Has real-time topology
 - Enables manipulating paths on the devices using standard south bound protocols
- Traffic Engineering becomes an SDN application
 - Optimizes paths network-wide
 - As few tunnels as necessary

Segment routing *simplifies* IP/MPLS control plane

- No need to run LDP or RSVP-TE
- Functionality is not compromised
 - Can forward traffic on non-shortest paths for traffic engineering
 - Detour, bypass FRR (fast re-route), and IP LFA protection
 - Secondary paths
 - SLA-conforming service specific paths (e.g. L2/L3 VPNs)
 - SDN programmability

TE Needs Shortest and Non-Shortest Paths; SR Can Encode Any Path

1 Segment (shortest IGP path)

• Go to Z on shortest path (node segment)

3 Segments

- Go to C on shortest path
- Go to X on link 3 (adjacency segment)
- Go to Z on shortest path

5 Segments

- Go to B on shortest path
- Go to W on shortest path
- Go to Y on shortest path
- Go to D on shortest path
- Go to Z on shortest path

Push-Based Telemetry Eases Traffic Demand Matrix Generation

- How much customer traffic enters the network in Hanoi and is destined for Tokyo?
 - Demand does not change based on internal routing
- Traditionally, NetFlow is used for this and can still be used
- Push- and model-based telemetry have very promising features, including real-time traffic visibility

YANG Model Pushed by Ingress Routers

+--ro traffic-collector +--ro afs +--ro af* [af-name] +--ro counters +--ro prefixes +--ro prefix* string +--ro ipaddr? +--ro mask? string +--ro label? Tc-oper-local-label +--ro base-counter-statistics +--ro transmit-packets-per-second-switched? uint64 +--ro transmit-bytes-per-second-switched? uint64 +--ro count-history* +--ro event-start-timestamp? uint64 +--ro event-end-timestamp? uint64 +--ro transmit-number-of-packets-switched? uint64 +--ro transmit-number-of-bytes-switched? uint64 +--ro is-valid? boolean +--ro traffic-matrix-counter-statistics +--ro transmit-packets-per-second-switched? uint64 +--ro transmit-bytes-per-second-switched? uint64 +--ro count-history* +--ro event-start-timestamp? uint64 +--ro event-end-timestamp? uint64 +--ro transmit-number-of-packets-switched? uint64 +--ro transmit-number-of-bytes-switched? uint64 +--ro is-valid? boolean +--ro prefix? string

Similar content to NetFlow for traffic matrix generation

• Misses port/proto level detail

Pushed from the routers

- Few seconds to minutes
- Efficient transfer of data
 - Binary encoded using ProtoBuf

Traffic Engineering as an SDN App.

SDN application manages traffic demand

- Current as well as future reservations
- IGP does not have to signal available bandwidth
- Push-based telemetry or NetFlow-based matrices can be generated
- SDN application computes paths and allocates bandwidth
 - Centralization yields network-wide resource optimization
 - Creates the fewest tunnels necessary
- □ SDN application adapts to failures and repairs
 - SDN controller provides real-time topology view
 - No race conditions after failures and repairs
- Segment routing can be used for network simplification
 - SDN controller makes this an abstraction for the application
 - RSVP-TE can still be used where SR is not available

Reducing the N² Tunnels

Only generates tunnels for traffic going over congested links

- Tunnels no longer need to be configured a priori at the routers
 - Only create them if they will have a positive impact
- Special case:
 - Under normal conditions don't generate any tunnels
 - Under failure conditions generate enough to alleviate congestion
- Do not create tunnels when IGP path satisfies the constraints
- Easy to implement in software with a global view, but hard to do one device at a time

Illustration

- 1 Gbps links
- Two elephant flows
 - 850Mbps west to east
 - 500Mbps north to south
- Lots of mice flows

Tunnel Recommendatio	ons mels -				- 20	15/12/12 00:59:31 — 2015/12/12	01:29:31 PST	So Live
Before After	Before 12 ms After 22 ms Max Delay Before 3 After 4 Max Hops		Link Utilizat Before	ion LINKS)	45-65% (3 LINI	S) 66-85% (1 LINKS) 8>85% (2 LI	NKS) Unknown (0	LINKS)
Max Link Utilization			After				NICS) Clinknown (0	known (0 LINKS)
Recommendation Types Any \$	4 Recommendations							
Head end	🕝 Tunnel 🕈	Head end	Tail end	Hops	Reserved B/W	Description	Recommendation	
	Business_mintunnels_10.5.0.100	west-edge	east- edge	3	425.000M	Signaled Name: Business_mintunnels_10.5.0.100	Add Tunnel	Sho
Tail end	Business_mintunnels_10.5.0.100	north- edge	south- edge	3	250.000M	Signaled Name: Business_mintunnels_10.5.0.100	Add Tunnel	Sho
	Business_mintunnels_10.5.0.100_0	west-edge	east- edge	4	425.000M	Signaled Name: Business_mintunnels_10.5.0.100_0	Add Tunnel	Sho
Reset Apply Filters	Business_mintunnels_10.5.0.100_0	north- edge	south- edge	3	250.000M	Signaled Name: Business_mintunnels_10.5.0.100_0	Add Tunnel	Sho
	4 records returned (1 pages)					First Pre	evious 1 Next	Las

Concluding Remarks

- SDN simplifies running a traffic engineered network
 - Application is the SDN revolution
- SDN application needs enablers from the infrastructure
 - Controller
 - Segment routing (or RSVP-TE when not available)
 - Push-based telemetry
 - NETCONF/YANG, PCEP, and other southbound protocols