
OpenDaylight Netconf/Yang
tutorial

ENOG13 - St.Petersburg
Evgeny Zobnitsev ()

Agenda

•Orchestration problem statement
• Netconf overview
• Restconf overview
• Yang overview
• OpenDaylight overview
• DEMO

Network configuration management today
● Various proprietary CLIs of the network elements (NEs)
● Various proprietary APIs of the network elements and

controller
● Manual configuration or expect scripts, as automation
● Imperative, incremental NEs configuration, lack of

abstractions
● Configuration screen scraping from NEs, using parsing

− The most bad thing, no programmatic knowledge when
the CLI command finished.

− CLI designed to work with humans, not machines.
● SNMP - has not solved this problems (see RFC3535)

Network configuration management today
● Service lifecycle management - workflow-based

− Workflows describes to the provisioning system, in detail,
which steps to take to reach a final state.

− Each service livecycle action has to be explicitly defined:
service create, service change, service edit, service
delete.

Network application life cycle today

Network configuration management future
● Model-driven topology of the network
− describes structure of the network.

● Model-driven services description, auto-generating APIs
− describes structure of the network services, APIs.

● Model-driven configuration of the network elements (NEs)
− describes structure of network element configuration,

provided and supported by vendor.
● Model-driven telemetry of the network elements (NEs)
− describes structure of network element supported telemetry,

provided and supported by vendor.

Network Application Life Cycle
(End-to-End Model-Driven Architecture)

Comparison of Model-to-model and
Workflow-based service-to-network mapping

Agenda

• Orchestration problem statement
•Netconf overview
• Restconf overview
• Yang overview
• OpenDaylight overview
• DEMO

Key Features of NETCONF (RFC6241)
● Domain-Specific Knowledge

− NETCONF was specifically developed to support network configuration

● Support for Transactionality
− NETCONF support Atomicity, Consistency, Isolation, Durability (ACID) transactionality

● Vendor Device Independence
− NETCONF has abilities to get capabilities just from device during <hello> exchange

● Support of run RPCs to run actions
− NETCONF has abilities to run the RPC that device support

● Device versions built-in support
− NETCONF has abilities to run <get-schema> RPC, to download YANG model of device

configuration just from device itself

Support for Transactionality
The four properties that define a transaction: ACID
● Atomicity

− Transactions are indivisible, all-or-nothing
● Consistency

− Transactions are all-at-once
− There is no internal order inside a transaction, it is a set of changes, not a sequence
− Implies that { create A, create B } and { create B, create A } are identical
− Implies that a system behaving differently with respect to the sequence is not transactional

● Independence
− Parallel transactions do not interfere with each other
− Transactions appear to happen always-in-sequence

● Durability
− Committed data always-sticks, i.e. remains in the system even in the case of a fail-over,

power failure, restart, etc

NETCONF Transport
NETCONF messages are encoded in XML
● Each message is framed by:

− NETCONF 1.0: a character sequence]]>]]>
− NETCONF 1.1: a line with the number of characters to read in ASCII

● NETCONF messages are encrypted by SSH
● SSH provides authentication, integrity and confidentiality
● NETCONF is connected oriented using TCP

− No need for manager to request resends

NETCONF extensibility
● When a NETCONF Manager connects to a NETCONF Server (NE), they

send <hello> message
● The contents of the <hello> message declares which NETCONF Capabilities

each party is capable of:
− Some capabilities are defined by the base NETCONF specification
− Each Yang Data model the device knows is also a capability
− Other specifications (standards body or proprietary) also define

capabilities
● By declaring support for a capability in <hello>, the manager will know which

operations it can submit to the NE.
● Extensions go in separate XML namespaces, which makes it easier to build

backwards and forwards compatible management applications.

NETCONF transactions
● NETCONF allows a Manager to send down a set of configuration changes, or

an entirely new configuration, in a single <edit-config> transaction.
● When doing so, the Manager does not need to:

− Figure out which order to send down the configuration changes in. All
different sequences are treated equal.

− Recover, if the transaction fails. If the transaction was unsuccessful
because of:

■ inconsistency in the configuration
■ an out of memory condition
■ any other reason

… none of the transaction content has been activated.
● The transaction did not roll back. It was simply never activated.

NETCONF base operations
● <get>
● <get-config>
● <edit-config>

− test-option (:validate)
− error-option
− operation

● <copy-config>
● <commit> (:candidate, :confirmed)
● <discard-changes> (:candidate)
● <cancel-commit> (:candidate)

● <delete-config>
● <lock>
● <unlock>
● <close-session>
● <kill-session>

NETCONF additional operations by capabilities
● <commit>, <discard-changes> (:candidate)

● <validate> (:validate)

● Copy candidate to running

● Discard changes in candidate (copy running to candidate)

● <create-subscription> (:notification)

● <partial-lock>, <partial-unlock> (:partial-lock)

● <commit>, <cancel-commit> (:commit)

● <get-schema> (:ietf-netconf-monitoring)

Agenda

• Orchestration problem statement
• Netconf overview
•Restconf overview
• Yang overview
• OpenDaylight overview
• DEMO

Key Features of RESTCONF (RFC 8040)
● It provides a uniform, standardized way for Web applications to access

the configuration data, state data, data-model-specific Remote
Procedure Call (RPC) operations, and event notifications within a
network element.

● The RESTCONF protocol operates on the configuration datastores
defined in NETCONF. It defines a set of Create, Read, Update, Delete
(CRUD) operations that can be used to access these datastores.

● The YANG language defines the syntax and semantics of datastore
content, operational data, protocol operations, and REST operations
that are used to access the hierarchical data within a datastore.

● In NETCONF, YANG data nodes are identified with XPath expressions,
starting from the document root to the target resource. RESTCONF
uses URI-encoded path expressions to identify the YANG data nodes.

Key Features of RESTCONF
● The RESTCONF protocol operates on a hierarchy of resources, each of

which can be thought of as a collection of data and a set of allowed
methods operating on that data. Resources are accessed via a set of
URIs using syntax specified in RFC 8040. The set of YANG modules
supported by the server determine the RPC operations, top-level data
nodes, and event notification messages supported by the server.

● The RESTCONF protocol does not include a data resource discovery
mechanism. Instead,the definitions within the YANG modules advertised
by the server are used to construct an RPC operation and data resource
identifiers.

RESTCONF resources
● Root Resource Discovery. When first connected, clients retrieve the

“/.well-known/host-meta” and use the link contained in the resource in subsequent
RESTCONF requests.

● RESTCONF Media Types. The RESTCONF protocol defines two application-specific media
types, yang-data+xml and yang-data+json, for encoding of the YANG data.

● API Resource. The RESTCONF API resource contains the root resource for the
RESTCONF datastore and operation resources. It is the top-level resource located at
“/restconf”. The API resource has three child resource: data, operation, yang-library-version.

● Datastore Resource. The datastore resource represents the combined configuration and
operational state data resources that can be accessed by a RESTCONF client. The
datastore resource is handled by the RESTCONF server and cannot be created or deleted
by clients.

● Data Resource. A data resource represents a YANG data node that is a descendant node
of a datastore resource. Each YANG-defined data node can be uniquely targeted by the
request-line of an HTTP method. Containers, leafs, leaf-list entries, and list entries are all
data resources. List entries are identified by the name of the list followed by “=” and the
value of the key(s).

RESTCONF resources
● Operation Resource. An operation resource represents an RPC operation defined with the

YANG “rpc” statement or a data-model-specific action defined with a YANG 1.1 “action”
statement. An operation is invoked using a POST method on the resource. All operation
resources representing RPC operations supported by the server are found in the
“/restconf/operations” subtree, while operation resources representing YANG actions are
identified in the “/restconf/data” subtree matching their location in the YANG-model.

● Schema Resource. Clients can retrieve YANG modules from the server. In order to retrieve
a YANG module, a client first retrieves the URL for the relevant schema which is stored in
the “schema” leaf in the module entry in the yang-library.

● Event stream (notification) resource. An event stream resource represents a source for
system-generated event notifications. Each stream is created and modified by the server
only. A client can retrieve a stream resource or initiate a long-poll server sent event stream.

RESTCONF HTTP methods vs NETCONF
RESTCONF operation Description NETCONF operation

HEAD Get without a body <none>
OPTION Discover which operations are

sup-ported by a data resource
<none>

GET Retrieve data and metadata <get>, <get-config>

POST Create a data resource <edit-config>
(nc:operation=“create”)

POST Invoke an RPC operation Call RPC directly

RESTCONF HTTP methods vs NETCONF
RESTCONF operation Description NETCONF operation
PUT Create or replace a data

resource
<edit-config>
(nc:operation=“create/
replace”), <copy-config>
(PUT on datastore)

PATCH Create or update but not delete
a data resource

<edit-config>
(nc:operation depends
on patch content)

DELETE Delete a data resource <edit-config>
(nc:operation=“delete”)

Agenda

• Orchestration problem statement
• Netconf overview
• Restconf overview
•Yang overview
• OpenDaylight overview
• DEMO

Key Features of Yang (RFC6020/7950)
● Service & NE Data Models vs. Information Models (UML)

− Yang is the data modeling language
● Domain-Specific Language

− Yang was specifically developed to support network configuration
● NE configuration modeling

− Yang is rich enough to model NE configuration (often follow the CLI)
● Service configuration modeling

− Yang is rich enough to model services in the same language as the NE
● Network topology modeling

− Any new device can be supported, by publishing Yang
● Vendors must create and publish Yang models of their own devices via

ietf-netconf-monitoring RFC feature

Yang module structure

● Header

● Imports & Includes

● Type definitions

● Configuration & Operational data declarations

● Action (RPC) & Notification declarations

Yang header
module mplsl3vpn {

 namespace "http://ru/fgts/mplsl3vpn";

 prefix mplsl3vpn;

 import ietf-inet-types {

 prefix inet;

 }

 import junos {

 prefix junos;

 }

 include "ietf-bgp-l3vpn";

 organization "Factor Group";

 contact e@zobnitsev.ru;

 description "This is MPLS L3VPN service for FGTS Lab";

 revision 2014-02-20 {

 description "Initial revision.";

 }

Yang imports and includes

Yang base types
● Most Yang elements have a

data type
● Type may be a base type or

derived type
● Derived types may be simple

typedefs or groupings
(structures)

● There are a lot of ready to use
IETF types, just import them

Type Name Meaning
int8/16/32/64 Integer
uint8/16/32/64 Unsigned integer
decimal64 Non-integer
string Unicode string
enumeration Set of alternatives
boolean True or false
bits Boolean array
binary Binary BLOB
leafref Reference
identityref Unique identity
empty No value, void

…and more

Yang data definitions – leaf statement

leaf vlan {

 mandatory true;

 type uint16 {

 range "1..4095";

 }

 description "PE-to-CE interface VLAN id";

 }

leaf bandwidth {

 description "Service bandwidth";

 type string {

 description "nn[k,m,g]::Service bandwidth";

 pattern "[0-9]+k|[0-9]+m|[0-9]+g";

 }

}

Leaf statement attributes
config Whether this leaf is a configurable value (“true”) or operational value (“false”).

Inherited from parent container if not specified

default Specifies default value for this leaf. Implies that leaf is optional

mandatory Whether the leaf is mandatory (“true”) or optional (“false”)

must XPath constraint that will be enforced for this leaf

type The data type (and range etc) of this leaf

when Conditional leaf, only present if XPath expression is true

description Human readable definition and help text for this leaf

reference Human readable reference to some other element or spec

units Human readable unit specification (e.g. Hz, MB/s, C)

status Whether this leaf is “current”, “deprecated” or “obsolete”

Yang data definitions – container statement
container description {

 description "Service description";

 leaf segment-type {

 type enumeration {

 enum B2B;

 enum B2C;

 enum B2O;

 }

 description "Market segment type";

 }

 leaf id-sm {

 type string;

 description "Order number in Service Manager";

 }

}

Yang data definitions – leaf-list statement

leaf-list domain-search {

 type string;

 ordered-by user;

 description "List of domain names to search";

}

Yang data definitions – list statement

list class {
 key "qos-class";
 leaf qos-class {
 type leafref {
 path "/qos/qos-class/name";

 }
 }
 leaf bandwidth-percentage {
 type uint32;
 }
 leaf priority {
 type empty;
 }
}

Leaf-list and list statements attributes

max-elements Max number of elements in list. If max-elements is not specified, there
is no upper limit, i.e. “unbounded”

min-elements Min number of elements in list. If min-elements is not specified, there is
no lower limit, i.e. 0

ordered-by List entries are sorted by “system” or “user”. System means elements are sorted in
a natural order (numerically, alphabetically, etc). User means the order the
operator entered them in is preserved.
“ordered-by user” is meaningful when the order among the elements have
significance, e.g. DNS server search order or firewall rules.

Yang data definitions – leafref statement

● A valid leafref can never be null/empty
● But the parent leaf can be optional
● A valid leafref can never point to a row that has been deleted or

renamed
● System checks validity of leafrefs automatically

Yang data definitions – leafref statement
list endpoint {
 leaf pe-device {
 description "PE-device selection";
 mandatory true;
 type leafref {
 path "/system:devices/system:device\

/system:name";
 }
 }
 container interfaces {
 description "Interface parameters on the PE-device";
 leaf interface {
 type leafref {
 path deref(../../pe-device)/../system:config/junos:configuration/junos\

:interfaces/junos:interface/junos:name;
 }
 }
}

Yang actions (RPCs)
rpc ping4-test {
 input {
 leaf destination {
 type inet:ipv4-address;
 }
 }
 output {
 leaf-list echo-result {
 type enumeration {
 enum "reachable" {
 value 0;
 description "Received reply";
 }
 enum "unreachable" {
 value 1;
 description "No reply during timeout";
 }
 }

Yang notifications

notification config-change {
 description
 ”The configuration changed";
 leaf operator-name {
 type string;
 }
 leaf-list change {
 type instance-identifier;
 }
}

<change>/ex:system/ex:services/ex:ssh/ex:port</change>
<change>/ex:system/ex:user[ex:name='fred']/ex:type</change>
<change>/ex:system/ex:server[ex:ip='192.0.2.1'][ex:port='80’]</change>

Yang augment statement

augment /sys:system/sys:user {
 leaf expire {
 type ietf-yang-types:date-and-time;
 }
}

list user {
 key name;
 leaf name {
 type string;
 }
 leaf uid {
 type uint32;
 }
leaf full-name {
 type string;
 }
 leaf class {
 type string;
 default viewer;
 }
}

All protocols interaction & standardization

* Source - Benoît Claise blog:
http://www.claise.be/2016/12/yang-opensource-tools-for-data-modeling-driven-management/

http://www.claise.be/2016/12/yang-opensource-tools-for-data-modeling-driven-management/
http://www.claise.be/2016/12/yang-opensource-tools-for-data-modeling-driven-management/

Extracting Yang modules out from RFCs
● To extract the Yang module(s) out of IETF draft for the validation,

Jan Medved created the xym.py, the eXtracting Yang Module
Python script for IETF drafts and RFCs.

● pyang is Yang validator, transformator and code generator,written
in python, lead by Martin Bjorklund, and constantly improved by the
community , especially now that the Yang 1.1 specifications [RFC
7950] have published. At the IETF, pyang is now part of the
submission tool (thanks to Qin Wu and Dapeng Liu): when posting
an IETF draft containing a Yang module, the Yang module
language is validated.

https://github.com/xym-tool/xym
https://github.com/mbj4668/pyang

Visual dependency tool – f.e. ietf-ip

Jan Medved developed the
symd.py, which generates a
variety of yang module
dependency graphs and output
suitable for visualization with
D3.js tools. Example shows the
importance of the ietf-ip Yang
module, as it is imported by many
other Yang modules.

https://github.com/xym-tool/symd/blob/master/symd.py

Yang - Impact analysis, bottlenecks.

Joe Clarke created an interesting
visual dependency tool based on
the output of symd.

http://www.yangcatalog.org/yang-search/impact_analysis.php
http://www.yangcatalog.org/yang-search/impact_analysis.php

Yang Catalog
● A Yang model catalog and registry that allows users to find models

relevant to their use cases from the large and growing number of
Yang modules being published.

● This server is running:
− A NETCONF and REST (not RESTCONF-compliant yet) server loaded with the

Yang module from draft-openconfig-netmod-model-catalog. It currently only
allows public read access to the content. Feel free to reach out through the
github forum if you are interested in write access. The username is oper and the
password is oper.

− A Yang Validator, a web frontend that allows for validation of Yang modules and
IETF drafts.

− A Yang Search, a web frontend that allows for searches over the content of the
module catalog.

− A Yang impact analysis tool.
− A Yang Explorer that includes a Yang browser and RPC-builder application to

experiment with Yang modules

Yang Catalog - Yang DB search
The Yang DB
search laid a
framework for the
multi-SDO impact
analysis, including a
color scheme for the
standard maturity
levels.
Currently it includes:
● IETF
● BBF
● OpenConfig

OpenConfig

● Informal industry collaboration of network operators
● Focus: define vendor-neutral configuration and operational state models

based on real operations
● Adopted Yang data modeling language
● Participants: Apple, AT&T, BT, Comcast, Cox, Facebook, Google,

Level3, Microsoft, Verizon, Yahoo!
● Primary output is model code, published as open source via public

github repo
● Ongoing interactions with standards and open source communities

(e.g., IETF, ONF, ODL, ONOS)

OpenConfig - Example configuration pipeline

*Source - Joshua George, Anees Shaikh - Google Network Operations

Current OpenConfig “process”

*Source - Joshua George, Anees Shaikh - Google Network Operations

Support for OpenConfig models in ODL

Configuration and monitoring APIs based on OpenConfig models
● BGP and routing policy

− interface to ODL BGP implementation
− some progress underway (e.g., IETF 93 hackathon)

● MPLS / TE
− integration with PCEP, segment routing

Agenda

• Orchestration problem statement
• Netconf overview
• Restconf overview
• Yang overview
•OpenDaylight overview
• DEMO

What is OpenDaylight?

● Open Source programmable platform hosted by the Linux Foundation

● ~4 Years Old

● Mature, Open Governance

● Mature code base

● ~1000 Individual Contributors from ~140 organizations

● Dozens of OpenDaylight-based solutions

● Over 100 deployments

OpenDaylight: a Yang-based microservices
Platform

MD-SAL Data
Notifications
RPCs
Clustering

NB
API

SB
Protocol

NB
API App App SB

Protocol
YANG-
modeled
Interfaces

OSS/BSS/CMS
(External Apps)

Controlled
DevicesYANG-

modeled
Interfaces

● Based on
Model-Driven Service
Abstraction Layer
(MD-SAL)

● Yang
● Data Modeling

Language for
NETCONF

● Creates well-defined
APIs

● Java and
RESTCONF APIs
auto-generated from
Yang

MD-SAL = Model-Driven Service Abstraction
Layer

…

…

…
…

…
…

…

● 3580 members of OpenDaylight User
Group
− 27 Meetup Cities
− Top 5 communities: SF Bay Area,

Bengaluru, Delhi, London, Tokyo
● 1782 people in China QQ group
● India Forum – 2 Days 300+ attendees
● > 700 people have taken the LF online

ODL course ($150/person) in first 2
months!

● Coming in 2017:
− OpenDaylight Days

The Sun Never Sets on OpenDaylight

Join ODL Russia Meetup Group !

Assign to group, we will meet soon!

https://www.meetup.com/OpenDaylight-Russia/

https://www.meetup.com/OpenDaylight-Russia/
https://www.meetup.com/OpenDaylight-Russia/

Java, Interface, Maven, OSGi, Karaf
● Java chosen as an enterprise-grade,

cross-platform compatible language
● Java Interfaces are used for event listening,

specifications and forming patterns
● Maven – build system for Java
● OSGi:

− Allows dynamically loading bundles
− Allows registering dependencies and

services exported
− For exchanging information across bundles

● Karaf: Light-weight Runtime for loading
modules/bundles
− OSGi based. Primary distribution mechanism for Helium

OSGi Framework
(Equinox)

Feature
A

 SAL
Feature

B …

Karaf

REST
●

●

−
−

●

−
−

http://localhost:8181/restconf/
http://localhost:8181/restconf/
http://localhost:8181/apidoc/explorer
http://localhost:8181/apidoc/explorer

NETCONF connector
● To connect the NETCONF/YANG NE to ODL - use network-topology

feature:
− feature:install odl-netconf-topology odl-restconf

● Fully capable (full support for Netconf/Yang) device to mount, we need
only:
− Name
− Host
− Port
− Username/Password

(for Netconf session)

NETCONF connector (advanced config)
● Advanced configuration

− Schema-cache-directory
− Reconnect-on-changed-schema
− Connection-timeout-millis
− Default-request-timeout-millis
− Max-connection-attempts
− Between-attempts-timeout-millis
− Sleep-factor
− Keepalive-delay
− Yang-module-capabilities
− Yang library
− Concurrent rpc limit

NETCONF connector - what available
● Get datastore

− yang-ext:mount
● Invoke RPC (POST)

− yang-ext:/mount/<module>:<operation>
● Update/Delete a netconf-connector
● Get/Set/Modify mounted NEs configuration
● Get the operational datastore
● Receive notifications from NETCONF NE

Agenda

• Orchestration problem statement
• Netconf overview
• Restconf overview
• Yang overview
• OpenDaylight overview

•DEMO

vrnetlab – tool for service models CI/CT/CD
● Run your favourite virtual routers in docker for convenient labbing,

development and testing.
● vrnetlab is being developed for the TeraStream project at Deutsche

Telekom as part of an automated CI/CT/CD environment for testing
our network provisioning system.

● It supports: Arista vEOS, Cisco CSR1000v,Cisco Nexus NX-OS,
Cisco XRv, Juniper vMX, Nokia VSR

● Features:
− Use docker and KVM
− Ship as single unit
− Bootstrap
− Flexible networking
− Simple: docker run —privileged -d vr-xrv:5.3.3

vrnetlab – tool for service models CI/CT/CD

● vMX runs two VMS:

● control plane

● forwarding plane

● vMX startup scripts is a mess

● vrnetlab makes it simple!

vrnetlab – tool for service models CI/CT/CD

NETCONF RFC Overview
● RFC 3535 Informational: Background
● RFC 6244 NETCONF+Yang Architectural Overview
● RFC 6241 Base NETCONF Protocol
● RFC 6242, 5539 Transport Mappings
● RFC 5277 Notifications
● RFC 5717 Partial Locking
● RFC 6022 NETCONF Monitoring
● RFC 6243 With defaults
● RFC 6470 Base Notifications
● RFC 6536 NETCONF Access Control Model

− https://datatracker.ietf.org/wg/netconf/charter/
− www.rfc-editor.org/rfc/rfcXXXX.txt

https://datatracker.ietf.org/wg/netconf/charter/
https://datatracker.ietf.org/wg/netconf/charter/
http://www.rfc-editor.org/rfc/rfcXXXX.txt
http://www.rfc-editor.org/rfc/rfcXXXX.txt

RESTCONF RFC Overview
● RFC 8040 - RESTCONF

Yang RFC Overview
● RFC 6020/7950 YANG Base Specification
● RFC 6087 Guidelines for YANG Authors and Reviewers
● RFC 6110 Mapping YANG and Validating NETCONF Content
● RFC 6244 NETCONF+Yang Architectural Overview
● RFC 6643 Translation of SMIv2 MIBs to YANG
● RFC 6991 Common Yang Data Types
● RFC 7223 YANG Module for Interface Management
● RFC 7224 YANG Module for Interface Types
● RFC 6022 YANG Module for NETCONF Monitoring

− https://datatracker.ietf.org/wg/netmod/charter/
− https://www.ietf.org/iesg/directorate/yang-doctors.html
− http://www.yang-central.org/

https://datatracker.ietf.org/wg/netmod/charter/
https://datatracker.ietf.org/wg/netmod/charter/
https://www.ietf.org/iesg/directorate/yang-doctors.html
https://www.ietf.org/iesg/directorate/yang-doctors.html
http://www.yang-central.org/
http://www.yang-central.org/

 Thank You
Evgeny Zobnitsev
e-mail: e@zobnitsev.ru
twitter: @ezobn

mailto:e@zobnitsev.ru

