

Diagnosing Performance Degradation with Route Analytics

Cengiz Alaettinoglu

It all started with a Jitter Study (2000)

- Studied jitter on 2 US, and 1 European backbones for several weeks
- □ For 99.99% packets, measured jitter < 1ms</p>

However, 0.01% of Jitter was Severe

Severe Packet Reordering

Theory: Packets being spewed out from an unwinding routing loop...

- Did we really have long routing loops in the network?
- □ Did ISIS really take 10+ seconds to convergence?
- □ So, we analyzed routing along with jitter

Excessive ISIS Churn caused excessive LSP Propagation Delay

Explanation

- □ Link state databases were not in sync:
 - Very large LSP databases
 - High churn rate ⇒ many LSPs to flood
 - LSP rate-control slowed down flooding
 - SPF updates may also have been delayed by rate limits
 - Any topology change could result in a loop under these conditions
- We realized being able to look at routing was key for powerful network performance analysis
- Today, we see very high churn in very large TE databases with auto-bandwidth with large number of tunnels

Route Analytics Today

Route Analytics Applications

- Troubleshooting and visualization
 - Ability to look at network state at any given time
 - Inspecting and playing events learned both from the routers and routing protocols
 - Comparing routing state and paths when a service/ application is performing well and when it is not
- Service/application monitoring and alerting
 - Monitor paths for changes in hops, metric, delay, and bandwidth
 - Monitor excessive protocol behavior

Route Analytics Applications (cont.)

- Network health assessment
 - Capacity planning
 - Anomaly detection
 - Path bottleneck analysis (bandwidth, delay, metric)
 - Failure analysis
- Topology-aware traffic analysis
 - Where is the traffic coming from, going to, its path and why?
 - Feed this back into path computation as a traffic matrix
- Proactive change modeling
 - Add/drop routers/switches/links/prefixes/peerings
 - Add/drop applications/services
 - Analyze the impact on paths and traffic levels
 - Feed this into provisioning

Use Case: Diagnosing Black Holing

- A peering router to a major service provider crashed
 - Hot swappable card was not quite so...
- Traffic to the SP was black-holed network-wide
 - Traffic that exited in all 6 locations was all black-holed
- About 3 minutes of routing outage
 - 3 minutes was too short to diagnose the issue at human speed
 - Had a 45 minute ad-revenue impact on the services
 - Users who can not use the service do something else

Expected Exit-Points Before Incident

6 Exit-Points (circled)

□ Blue routers take the blue

exit router...

The Incident

ISIS activity during incident

4 entries 2004-10-28 03:32:47 - 10:58:08

Exit-Points During Incident

A Path Before and After the Incident

BGP Next hop resolution: before 128.9.129.1/32 in ISIS vs after 128.9.128.0/19 in BGP

•		<u>-</u>		·
Path	Source Node	Destination Node	Protocol	Resolved by Prefix
F-edge-dfw-03→ 199.221.80.0/24				
F-Hop 1	edge-dfw-03	core-dfw-01	BGP	199.221.80.0/24
+ Hop 2	core-dfw-01	core-aus-01	BGP	199.221.80.0/24
⊢⊤Hop 3	core-aus-01	edge-aus-01	RCD	199.221 00 0/24
Lookup 1			ISIS	128.9.129.1/32

Route Recursion

Path	Source Node	Destination Node	Protocol	Resolved by Prefix
redge-dfw-03→ 199.221.80.0/2	4			
F-Hop 1	edge-dfw-03	core-dfw-01	BGP	199.221.80.0/24
+ Hop 2	core-dfw-01	core-aus-01	BGP	199.221.80.0/24
⊢-Self Hop	core-aus-01	core-aus-01	BGD	133.221.90 0/24
Lookup 1			BGP	128.9.128.0/19

Cause of Black Holing

- When the peering router crashed
 - IGP routes were withdrawn in seconds
 - BGP routes were not withdrawn
 - 3 KEEPALIVEs of 60 seconds each router rebooted before this
 - The BGP routes were now resolved by the /19 prefix in BGP
 - The /19 BGP announces internal address space not meant for this
 - Injected by 6 core routers cost from any router to a core router is very low
- Remedy:
 - Insert a really expensive static route for the /19 to ISIS
 - Cost more than longest possible path in IGP
 - Now, when a peering router crashes, the traffic will choose a true exit
 - See http://www.nanog.org/meetings/nanog34/presentations/gill.pdf
- □ Do not:
 - Make IBGP session to converge faster (like running BFD)
 - You will lose the IBGP session each time the IGP path of the session changes

Use Case: BGP Peering Traffic Analysis

- For most regional networks, incoming traffic from the Internet is higher than outgoing traffic
 - What ASs (sources) is the traffic coming from
 - What neighbor AS did it come from
 - How is it distributed across the edge routers
- Need answers for:
 - Should I upgrade external links or get new links?
 - To whom? The same neighbor ASs or new neighbor ASs?
 - Who can I peer with to cut transit cost?

Routing-Aware Traffic Flow Analysis

- Route-Flow Fusion determines each flow's ingress/egress and path across the network and onto the Internet
 - Delivers traffic matrices for planning and path computation
 - Helps make peering decisions to save transit cost

Traffic by Source AS

- Peering with Google can save the most cost
- Not all sources may be feasible to peer with

Neighbor ASs

○ ○ ○					
Routers	Upstream Neighbor AS				
Exporting Ingress	⇔	6		Upstream Ne	eighbor AS 🤇
Egress	Upstream Neighbor AS	5 Minute , ^	Daily 95%ile	Weekly 95%ile	Monthly 95%ile
Total	GOOGLE (15169)	16.88G	16.79G	16.88G	16.38G
Router Groups	Paid Transit	16.76G	17.67G	19.61G	18.55G
Ingress	LEVEL3 Level 3 Communications (3356)	14.92G	15.48G	17.44G	16.39G
Egress	INTERNET2-TRANSITRAIL-CPS (11164)	11.30G	11.84G	14.44G	12.94G
Total	NETFLIX-ASN (40027)	5.08G	4.94G	5.29G	5.34G
-BGP	ISC-AS1280 Internet Systems Consortium, Inc. (1280)	4.58G	4.42G	3.52G	4.04G
Source AS	LLNW-AS Limelight Networks, INC. proxy AS object (22822)	2.77G	2.60G	3.38G	2.29G
	EDGECAST (15133)	2.02G	2.29G	2.82G	2.71G
Destination AS	ASN-QWEST-US NOVARTIS-DMZ-US (209)	1.84G	2.27G	2.31G	2.22G
Source/Destination AS	STANFORD-INTERNET-ACCESS (46749)	1.46G	1.55G	1.80G	1.64G
Upstream Neighbor AS	SDSC-AS (195)	1.41G	2.86G	2.90G	2.62G
Downstream Neighbor AS	ASN-LNET-AS (567)	1.21G	1.15G	1.25G	1.36G
Upstream Transit AS	MFNX MFN - Metromedia Fiber Network (6461)	1.12G	1.14G	1.27G	1.23G
Downstream Transit AS	AS14041 (14041)	1.11G	1.15G	1.36G	1.37G
D GWIIDH CUIT I TURISH THE	HURRICANE (6939)	960.87M	849.10M	841.90M	798.46M
Next Hops	XO-AS15 (2828)	924.54M	917.48M	1.08G	933.72M
Community	72 entries				
					,
①2013-10-25 14:00:00 PDT					

- Reveals where the traffic enters your network
- Is the traffic balanced the way you would like?
- Capacity planning with this data tells when it is time to upgrade or add new peering

Upstream Transit ASs

- Routers «		Upstream Transit AS					
Exporting Ingress	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	⇔			🕏 🔯 🖆 🔽 Upstream Transit AS (
Egress Total	Upstream Transit AS	5 Minute Avg	Daily 95%ile	Weekly 95%ile	Monthly 95%ile		
	NTT-COMMUNICATIONS-293	30.75G	31.21G	33.62G	31.40G		
Router Groups	TELIANET TeliaNet Global Ne	28.28G	28.68G	31.47G	29.85G		
Ingress	GBLX Global Crossing Ltd. (3	13.09G	13.76G	15.31G	14.80G		
- Egress	TINET-BACKBONE Tinet SpA	11.77G	12.41G	13.68G	13.21G		
- Total	GLOBEINTERNET TATA Com	10.17G	10.99G	12.18G	11.49G		
BGP	AS-NLAYER (4436)	9.55G	10.27G	11.07G	10.74G		
□ BGP □ Source AS	SEABONE-NET TELECOM IT	9.48G	10.47G	11.60G	11.95G		
	BTN-ASN (3491)	9.29G	10.11G	10.87G	9.85 G		
Destination AS	COGENT Cogent/PSI (174)	9.07G	9.59G	10.56G	9.53 G		
Source/Destination AS	DTAG Deutsche Telekom AG	9.05G	9.27G	10.46G	8.70G		
Upstream Neighbor AS	CW Cable and Wireless World	8.70G	9.54G	10.90G	9.78G		
Downstream Neighbor AS	UUNET (701)	8.07G	8.98G	10.33G	9.50G		
Upstream Transit AS	COMCAST-7922 (7922)	7.81G	8.62 G	9.61G	8.96G		
Downstream Transit AS	TELEFONICA Telefonica Bac	7.56G	8.39G	8.92G	8.03 G		
	PACNET Pacnet Global Ltd (1	7.10G	7.81G	8.66G	7.68G		
Next Hops	AS1239 SprintLink Global Ne	7.06G	7.87G	9.14G	8.29G		
Community	→ 41106 entries						

- Offers the good choices for peering very hard to compute
 - This is not in your control, rather in the source AS's control
 - A heuristics-based solution:
 - Alternate routes for a given source are exposed during BGP convergence
 - Use these and graph search to compute these values

Modeling a New BGP Peer

<u> </u>	Add eBGP Peering
BGP/AS65464	
Router:	SJ-PPE-M10-R15
Туре:	Originator
NextHop IP:	10.120.1.15
Neighbor AS:	65471 ⋈ ▼
Add routes v	vith AS path containing neighbor AS
O Add routes le	earned from neighbor AS
O Add routes le	earned from neighbor AS by router:
	Revert ✓ Apply ✓ Close

Before-and-After Comparison Reveals Transit Traffic Shifts

Route Analytics Simplifies Planning for BGP Peering Analysis

- Traffic volumes are obtained by fusing flows with routes
- Create a bunch of "mocked-up" BGP routes
- Route-Flow Fusion will now follow these routes
 - Simple and elegant
 - No simulation, emulation or inaccurate modeling used
- Impact analysis
 - Route analytics knows what your network will do

Challenges in Software Defined Networking

SDN makes networks programmable for

- Network overlays
- Bandwidth reservation
- Demand placement
- Service deployment
- Etc.

What will be their impact?

Network Virtualization SDN Analytics

Tying Overlay and Underlay Networks

Concluding Remarks

- Routing impacts network performance
 - Availability and reachability
 - Sub-optimal paths with longer delays, jitter
- Route analytics proves to be very effective
 - Troubleshooting, monitoring, alerting
 - Reporting and network health assessment
 - Routing-aware traffic analysis
 - BGP peering analysis
 - Traffic matrices
- Route analytics provides foundation for SDN Analytics