Future Networks view from Russia

Sergey Valov Nikolay Likchashev

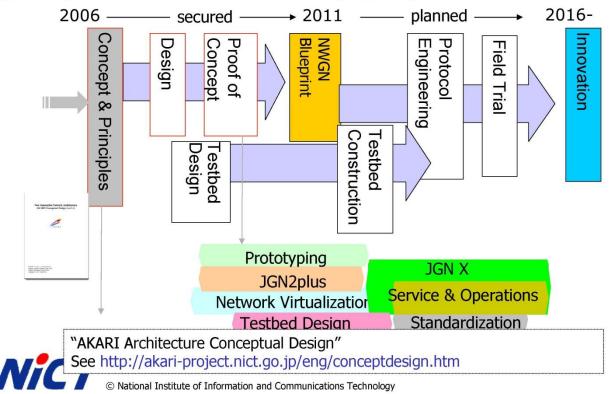
Будущая сеть. Глобальные инициативы.

Будущая сеть. Проекты.

ITU-T Focus Group on Future Networks:

Nº	Программа	Число проектов	Объем финансирования
1	GENI (US)	29 проектов	493 млн. \$US (2009г.)
2	FIND (US)	43 проекта	560 млн. \$US (2009г.)
3	FP7 (EU)	68 проектов	1.166.997.255,00== Euro (2011)
4	AKARI (JP)	27 проектов	450 млн. \$US (2009г.)
5	FIF (KO)	16 проектов	230 млн. \$US (2009г.)
6	IRTF (Int)	13 рабочих групп	Ş

+You	Search	Images	Maps	Play	YouTube	Gmail	Documents	Calendar	Translate	More +		
501	वाने		"Futur	e Interr	net"						Q	
Sear	ch		About 1	1,200,00	0 results (0)4	2 seconds	;)					


Будущая сеть. Проекты будущего (AKARI).

AKARI Design Project R&D Plan

Grand-Designing a New Generation Network beyond 2015 -

(1) Design ideal network under clean-slate concept (2) Bridge current network and ideal network

4

5

Будущая сеть. Результаты проектов.

Nº	Программа	Результаты
1	GENI (US)	OpenFlow (Software Defined Networking)
2	FIND (US)	???
3	FP7 (EU)	M2M
4	AKARI (JP)	path/packet networks
5	FIF (KO)	???
6	IRTF (Int)	???

Оценки суммарного объема финансирования: 2009 - \$1,2B, 2010 - \$2,0B, 2011 - \$2,8B.

Будущая сеть.

Проект - «**IPv17**»

- 1. (No-Anonymous) исключение сетевой анонимностью при сохранение баланса между свободой и ответственностью.
- 2. (Self-Routing) установление маршрута передачи без протоколов маршрутизации на основе несвязанных маршрутных таблицах.
- 3. (Self-Engineering Traffic) обслуживание каждого трафика по требованию сетевого приложения.

Проект - «**IPv17**»

1. (No-Anonymous) — исключение сетевой анонимностью при сохранение баланса между свободой и ответственностью.

Персональный адрес занимает 256 байт и состоит из Номера, Имени и Псевдонима. Имеет исполнение, или пластиковой карты, или USIM, или ROM, или иного устройства.

Персональный номер и имя <u>присваивают</u> сетевому объекту, а поле псевдоним пользователь <u>определяет</u> самостоятельно.

При установлении соединения Номер, Имя и Псевдоним используют как равноправные элементы процесса маршрутизации.

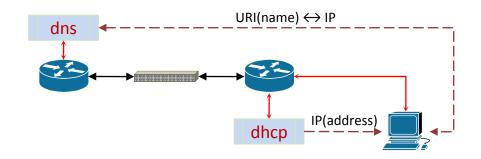
Для входа в сеть пользователь регистрирует либо Номер, либо Имя, либо Псевдоним посредством многофакторной (4 уровневой) идентификации.

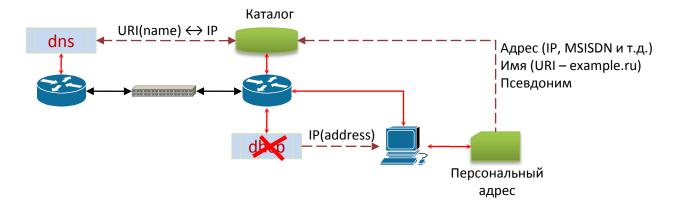
Проект - «**IPV17**»

1. (No-Anonymous) – исключение сетевой анонимностью при сохранение баланса между свободой и ответственностью.

(All-address space) – поддержание всех систем адресации механизмом транспортировки информации

63	58	гранспортировки информации	0
		Персональный Номер (8 Байт)	
Тип		Номера	


Номер		Тип системы нумерации			
0	Государственные структуры				
1		Банковская сеть			
	0	MPEG (PES)			
	1	ATM			
	2	FR (Frame Relay)			
2	3	Номер канала (TDM)			
4	4	IPv4			
	5	FC (Fiber Channel)			
	6	RPR (Resilient packet ring)			
	7	(G)MPLS			
3		Ethernet + VLAN			
4		Е.164 (унаследованные системы)			
5		Х.121 (унаследованные системы)			
6		IPv6			
7	0	Персональные номера IPv17			
	1	Групповые номера IPv17			
	2	Резерв			
	3	Область номеров мониторинга сети IPv17			


Закрытая область

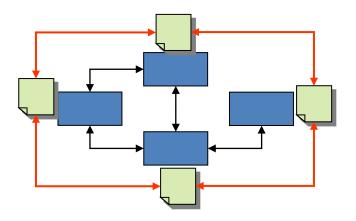
Для набора номера в данной области номеров требуется специализированные терминалы. Коммутаторы запрещают попадание данных номеров в сеть.

Проект - «**IPV17**»

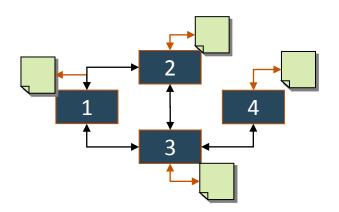
- 1. (No-Anonymous) исключение сетевой анонимностью при сохранение баланса между свободой и ответственностью.
- 1. Поддержание всех систем адресации (All-address space).
- 2. Непосредственное присвоение адреса пользователю меняет механизм управления Интернетом.
- 3. Адрес может быть использован в любой точки подключения.
- 4. Меняется механизм учета (биллинг) стоимости соединения.

Проект - «**IPv17**»

2. (Self-Routing) - маршрутизация по несвязанным таблицам.

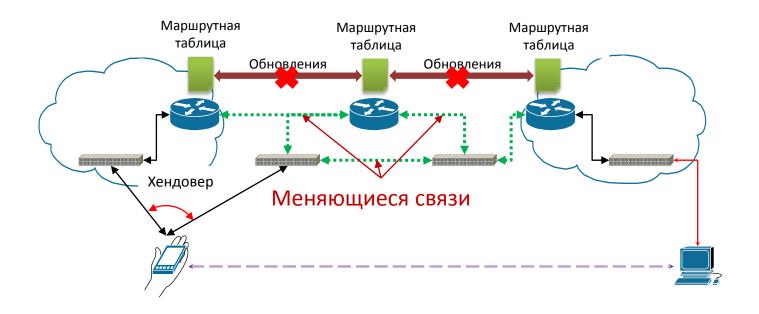

Определение маршрута по таблице маршрутизации без поддержания её идентичночти в рамках автономной системы.

Динамически реконфигурация топологии при различных перегрузках, отказов или аварий.


Отсутствие протоколов маршутизации.

Энергоэффективность установления маршрута (снижения показателя Вт/Гбит/с.)

Таблично-связанный способ



Таблично-несвязанные (ассоциативные)

Проект - «**IPV17**»

2. (Self-Routing) - маршрутизация по несвязанным таблицам.

- 1. Определение маршрута по таблице маршрутизации без поддержания её идентичночти в рамках автономной системы.
- 2. Динамически реконфигурация топологии при различных перегрузках, отказов или аварий.
- 3. Отсутствие протоколов маршутизации.

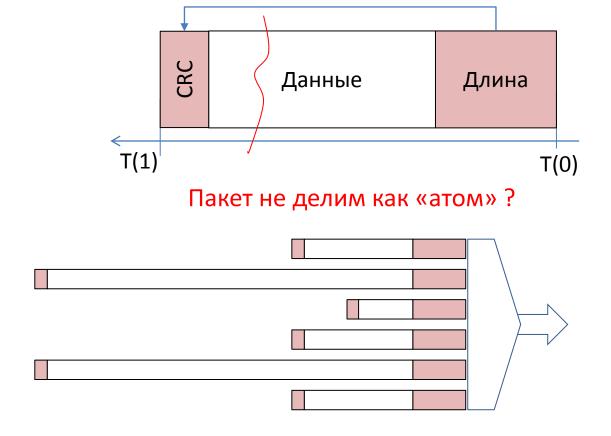
Будущая сеть. Технические особенности.

Способ маршрутизации поддерживает:

- 1. Сети фиксированной связи, когда узлы связи имеют постоянные и неизменные связи, а оконечные устройства в течение сессии остаются неподвижными;
- 2. Сети мобильной связи, когда узлы связи имеют постоянные и неизменные связи, а оконечные устройства в течение сессии могут менять свое местоположение;
- 3. Сети адаптивно-мобильной связи, когда связи между узлами связи могут меняться, и оконечные устройства в течение сессии могут менять свое местоположение;
- 4. Сети групповой связи, когда узлы связи имеют постоянные и неизменные связи, а оконечные устройства, оставаясь неподвижными, могут подключаться или отключаться к/от любой сессии циркулирующей в сети;
- 5. Сети множественной связи, когда узлы связи имеют постоянные и неизменные связи, а два и более оконечных устройства могут устанавливать множество сессий с целью повышения надежности или повышения пропускной способности канала связи;

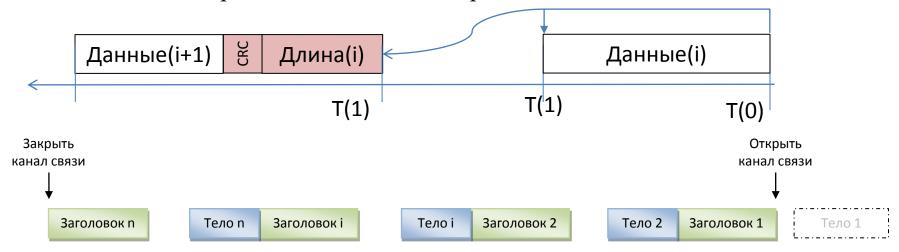
Особенности способа маршрутизации

6. Отсутствует доступ к маршрутным таблицам, что устраняет появление любых дестабилизирующих воздействий на сетевую инфраструктуру.


Проект - **«IPV17»**

- 2. (Self-Engineering Traffic) обслуживание каждого трафика в узле сети по требованию сетевого приложения.
 - 1. Обслуживанию подлежит каждый Трафик.
 - 2. Каждому Трафику:
 - выделяют полосу пропускания,
 - гарантируют задержку, и
 - нормируют флуктуацию задержки.
 - 3. Исключение взаимовлияния между Трафиками.
 - 4. Совмещение Трафиков «реального времени» и не критичного к задержкам в одном канале.
 - 5. Исключение управления Трафиков в плоскости данных.

Работы выполняются при финансовой поддержке Министерства образования и науки в рамках ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007—2013 годы», государственный контракт № 14.514.11.4010.

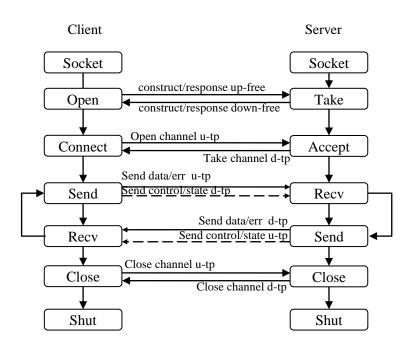

Проект - «**IPV17**»

2. (Self-Engineering Traffic) – обслуживание каждого трафика в узле сети по требованию сетевого приложения.

Проект - **«IPV17»**

(Self-Engineering Traffic) – обслуживание каждого трафика в узле сети по требованию сетевого приложения.

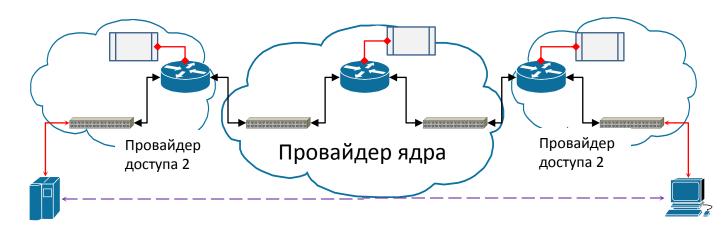
Новый способ передачи информации основанный на способе динамического временного мультиплексирования с измененным порядком следования заголовка и тела блока. Данный способ передачи позволяет остановить передачу пакета в произвольный момент времени с сохранением целостности передачи пакета. В результате осуществляется переход от приоритетной передачи пакетов к передачи с управляемой задержкой.


Управление задержками позволяет объединить трафики «реального времени» с трафиками не критичными к временным задержкам в рамках одного канал связи. Каждому трафику выделяют полосу пропускания с гарантированной задержкой и нормированной флуктуацией задержки.

При передаче трафика заголовок блока сохраняется в сетевом узле, что предотвращает несанкционированное изменение номера отправителя и получателя в процессе переноса. Тем самым устраняется основная сетевая проблема, связанная с подменой адреса отправителя. ENOG4 2012г.

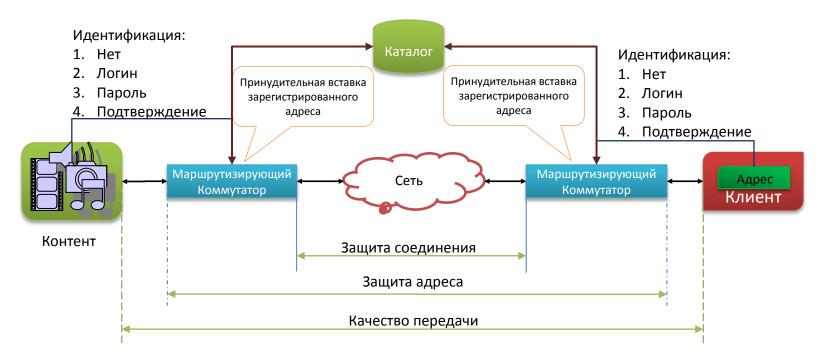
Проект - «**IPv17**»

2. (Self-Engineering Traffic) – обслуживание каждого трафика в узле сети по требованию сетевого приложения.



Проект - «**IPv17**»

(Self-Engineering Traffic) – обслуживание каждого трафика в узле сети по требованию сетевого приложения



Будущая сеть.

- 1. (No-Anonymous) исключение сетевой анонимностью при сохранение баланса между свободой и ответственностью.
- 2. (Self-Routing) установление маршрута передачи без протоколов маршрутизации на основе несвязанных маршрутных таблицах.
- 3. (Self-Engineering Traffic) обслуживание каждого трафика по требованию сетевого приложения.

Будущая сеть. Цели проекта.

- 1. Повышение защищенности сетевой инфраструктуры предусматривает:
 - ✓ установление соединения только между достоверно идентифицированными участниками информационного обмена;
 - ✓ защиту от изменений адресов участников информационного обмена;
 - ✓ устранение режимов управления процессами установления маршрутов передачи и управления трафиками, устранение доступа к маршрутным таблицам, гарантированно не нарушит функционирование сетевой инфраструктуры при организации любого дестабилизирующего воздействия;
- 2. Повышение надежности сетевой инфраструктуры предусматривает:
 - ✓ реконфигурирование маршрутов передачи при выходе из строя канала связи или оборудования;
 - ✓ обеспечение требуемую производительности маршрутизации при произвольно большом росте сети;
 - ✓ обслуживание произвольного числа соединений с заданным качеством.
- 3. Повышение качества передач информации предусматривает:
 - ✓ определение качеством передачи трафика, как выделение заданной скорости передачи, с гарантируемой задержкой и нормируемым джиттером задержки;
 - ✓ обеспечение качества передачи трафика фиксированным и мобильным пользователям;
 - ✓ обеспечение качества передачи трафика на совокупности сетей без использования управляющих подсистем.
- 4. Снижение затрат на обслуживание сетевого оборудования предусматривает, что оборудование созданное по новой технологии:
 - ✓ не требует инициализации и настройки;
 - ✓ использует только методы мониторинга состояния;
 - ✓ исключает управляющие воздействия на свои параметры.
- 5. Снижение **барьера** по «освоению» сетевой технологии предусматривает, что время на обучение должно занимать, не более :
 - ✓ 1 семестра для студентов;
 - ✓ 1 недели для профессионалов.

Будущая сеть.

Future Networks view from Russia

В России есть проект категории "Future Internet"

Авторы:

Николай Лихачев n.likhachev@concept-network.ru

Сергей Валов s.valov@concept-network.ru