

Virtual CPE Solutions for Service Providers

Speaker Bio

Justin Moore jmoore@plumgrid.com

- Principal Solutions Architect at PLUMgrid
- Background leading complex technology initiatives in the enterprise
- Work with customers to design, and deploy Cloud and SDN/NFV systems to meet business needs

Why vCPE?

Enable Rich Services, Secure Multi-tenancy, and Automation

Services Rich for ARPU Growth allows operators to "stitch" in any 3rd party services through Service Insertion Architecture

Faster Time to Revenue with network ondemand provisioning, cloud-based services, automation, visibility, and analytics

Lower Capex & Opex with generic hardware, automation, visibility, analytics

Secure Multi-tenancy with built-in microsegmentation for per tenant traffic isolation via Virtual Domains

3

Rapid Evolution of Service Delivery

- ✓ Network on-demand
- ✓ Faster time to revenue
- ✓ Lower Capex and Opex
- ✓ Higher ARPU

수취등 은 은 은

Application Driven

- ✓ Network services as "apps"
- ✓ Download on-demand
- ✓ Chain & run VNFs
- ✓ No need for appliances

Instantaneous

- Cut provisioning from months to minutes
- Bring up & down VNFs or virtual networks
- ✓ Upgrade VNFs in run-time

"Customers are willing to pay more for unique, value-added services [Network on Demand] and are not expecting a discount,"

Randall Stephenson, AT&T chairman and CEO, October 2015

Source: AT&T Analyst Day 2015

Traditional to Software Defined Systems

Custom hardware & OS
Hardware defined systems
Manual processes

Copyright © PLUMgrid, Inc. 2011-2015

What is vCPE?

A 3 part solution

Service Insertion / Chaining

NFV / VNF

Segmentation – distributed control - data plane

ETSI Virtual CPE Model

Virtual Network Functions in the Cloud

- ✓ Micro-segmented virtual domain per tenant
- ✓ Complete separation of traffic, policies, and network functions
- ✓ Secure with each domain created on-demand, no hardware changes

Service Insertion Architecture & Chaining

- Seamless insertion of 3rd party services
- Enables Service Function Chaining in automated + simplified way
- Accelerates service creation and delivery

Tenant vCPE or VMs

SDN / NFV model

Separation of control and data planes

Control Plane

- Virtualized, runs on redundant controllers
- Provides "Remote control" of services
- Easy to provision, troubleshoot, patch or upgrade
- Runs on generic hardware

Data Plane

- Virtualized, runs on end user nodes/CPE
- · Enables local forwarding and services
- Easy to provision, troubleshoot, patch or upgrade
- Runs on generic hardware

IO Visor Project

Open Source & Community

- An open source project and a community of developers under Linux Foundation
- Enables a new way to Innovate, Develop and Share IO and Networking functions

Programmable Data Plane

- Advancing in-kernel modular IO loadable at run-time without recompilation or reboot
- Programmable data plane and development tools to simplify the creation and sharing of dynamic "IO Modules"

2

A Linux Foundation project started by PLUMgrid IO Visor up streamed into the Linux Kernel since 3.16

IO Visor Project Summary

FLEXIBILITY

- Programmable, extensible architecture
- Dynamic IO modules that can be loaded and unloaded in kernel at run time without recompilation
- Portable across any platform

PERFORMANCE

- High performance, in-kernel
- Distributed data plane and services without bottlenecks or hairpinning
- Scale-out forwarding without compromise on functionality

- Collaborative, open source project focused on IO and networking functions
- Code already up streamed to Linux kernel
- Hosted by the Linux Foundation
- Formed by industry leaders across systems, software, and silicon

IO Visor Project, What is in it?

- A set of development tools, IO Visor Dev Tools
- A set of IO Visor Tools for management and operations of the IO Visor Engine
- A set of Applications, Tools and open **IO Modules** build on top of the IO Visor framework
- A set of possible use cases & applications like Networking, Security, Tracing & others

Layer 2 Tenant Topology – Throughput Performance

2011-2015 © PLUMgrid - Confidential Information

IO Visor Use Cases

 Fully distributed virtual networks across multiple compute nodes

Security

 ✓ Fencing of user space components in Kernel

Monitoring in real-time

IO Visor Project Use Cases Example: Networking

- IO Visor is used to build a fully distributed virtual network across multiple compute nodes
- All data plane components are inserted dynamically in the kernel
- No usage of virtual/physical appliances needed
- Example here <u>https://github.com/iovisor/bcc/tree/</u> <u>master/examples/</u> <u>distributed_bridge</u>

IO Visor Project Use Cases Example: Tracing

- IO Visor is used to build a realtime, distributed analytics platform that monitors the health of a VXLAN tunneling infrastructure
- Data plane component is inserted dynamically in the kernel and leveraged by the application to report information to the user
- Example here <u>https://github.com/iovisor/bcc/tree/</u> <u>master/examples/tunnel_monitor</u>

IO Visor Project Use Cases Example: Storage Monitoring

- IO Visor is used to build a realtime, distributed analytics platform that monitors the health of the storage subssytem
- Data plane component is inserted dynamically in the kernel and leveraged by the application to report information to the user
- Example here: <u>https://github.com/iovisor/bcc/tree/</u> <u>master/tools</u>

./biolatency					
racing b	olo	ck device	I,	/0 Hit (Ctrl-C to end.
C					
usecs			:	count	distribution
0	->	1	:	0	
2	->	3	:	0	
4	->	7	:	0	
8	->	15	:	0	
16	->	31	:	0	
32	->	63	:	0	
64	->	127	:	1	
128	->	255	:	12	*****
256	->	511	:	15	*****
512	->	1023	:	43	******
1024	->	2047	:	52	*******
2048	->	4095	:	47	******
4096	->	8191	:	52	******
8192	->	16383	:	36	******
16384	->	32767	:	15	*****
32768	->	65535	:	2	*
65536	->	131071	:	2	*

The latency of the disk I/O is measured from the issue to the device to its completion. A -Q option can be used to include time queued in the kernel.

IO Visor Project Use Cases Example: Security

- IO Visor provides a powerful platform for secure computing
- BPF/eBPF can be used as the backend to enforce fencing of user space components (applications) in the kernel
- BPF program executed whenever an application is making a system call into the kernel
- Seccomp as an example

5155 Old Ironsides Dr. Suite 200 Santa Clara, CA 95054

in

You Tube

THANK YOU!

Keep in Touch and Contact Us

(408) 800-7586

www.plumgrid.com

PLUM grid