### IPv6 for LIRs & the Routing Registry

ENOG/RIPE NCC Regional Meeting June 2011, Moscow

Ferenc Csorba



#### Schedule

- IPv4 exhaustion
- IPv6 address space
- Russian and regional IPv6 deployment statistics
- BGP multihoming
- Routing & the RIPE Database





#### RIPE / RIPE NCC

#### **RIPE**

Operators community
Develops addressing policies
Working group mailing lists

#### RIPE NCC

Located in Amsterdam

Not for profit membership organisation One of five RIRs - distributes IP & ASN

#### How can you influence addressing policies

- Take part in email discussions
  - RIPE website → RIPE → Mailing Lists

- Come to the RIPE Meetings
  - Amsterdam was in May, Vienna in October
  - Two free tickets for new LIRs
  - Remote participation possible

# 0:11:00:13

IPv4 Address Pool Exhaustion



#### IANA IPv4 Pool



#### IPv4 address distribution



#### IANA and RIRs IPv4 pool



#### Our slice of the IPv4 pie



#### RIPE NCC's IPv4 Pool





http://www.ripe.net/internet-coordination/ipv4-exhaustion/ipv4-available-pool-graph



#### IPv4 exhaustion phases



#### Run Out Fairly (of IPv4)

- Gradually reduced allocation / assignment periods
- Needs for "Entire Period" of up to...
  - 12 months (January 2010)
  - 9 months (July 2010)
  - 6 months (January 2011)
  - 3 months (July 2011)

50% has to be used up by half-period

#### How will we evaluate your requests?

Find all criteria at:

'IPv4 Evaluation Procedures' page

<u>http://www.ripe.net/lir-services/resource-management/</u> <u>contact/ipv4-evaluation-procedures</u>

#### New: All IPv4 Requests in one queue

New and ongoing requests. Every email: new time stamp



#### IPv4 exhaustion phases



#### RIPE NCC's last /8

- We do things differently!
- Ensures IPv4 access for all members
  - 16000+ /22s in a /8
  - members can get one /22 (=1024 addresses)
  - must already hold IPv6
  - must qualify for allocation
- /16 set aside for unforeseen situations
  - if unused, will be distributed
- No PI



## 240:11:30100:13 315 193.00

#### IPv6 Address Space



#### Where do all the addresses come from?



#### Policy process: decision making





Registration



#### Conservation



Aggregation

#### Governing principles of addressing policy

- Registration (in RIR whois databases)
  - Ensure uniqueness of Internet number resources
  - Provide contact information for users of Internet number resources
- Aggregation
  - Introduction of Classless Inter Domain Routing (CIDR)
  - Provide scalable routing solution for Internet
- Conservation
  - Policies to ensure fair usage
  - Number resources are distributed based on need



#### Classless Inter-Domain Routing (CIDR)

| ب             | Prefix | /48s      | /56s | /64s         | Bits |
|---------------|--------|-----------|------|--------------|------|
| Pv6 Chart     | /24    | 16M       | 4G   | 1T           | 104  |
| <b>\( \)</b>  | /25    | 8M        | 2G   | 512G         | 103  |
| O             | /26    | 4M        | 1G   | 256G         | 102  |
| Q             | /27    | 2M        | 512M | 128G         | 101  |
| 2             | /28    | 1M        | 256M | 64G          | 100  |
| <u>-</u>      | /29    | 512K      | 128M | 32G          | 99   |
|               | /30    | 256K      | 64M  | 16G          | 98   |
|               | /31    | 128K      | 32M  | 8G           | 97   |
|               | /32    | 64K       | 16M  | 4G           | 96   |
|               | /33    | 32K       | M8   | 2G           | 95   |
|               | /34    | 16K       | 4M   | 1G           | 95   |
|               | /35    | 8K        | 2M   | 512M         | 93   |
|               | /36    | 4K        | 1M   | 256M         | 92   |
|               | /36    | 2K        | 512K | 128M         | 92   |
|               | /37    | 2K<br>1K  | 256K | 64M          | 90   |
|               | /39    | 512       | 128K | 32M          | 89   |
|               | /40    | 256       | 64K  | 32IVI<br>16M | 88   |
|               | /40    |           |      |              | 87   |
|               | /41    | 128<br>64 | 32K  | 8M<br>4M     | 86   |
|               |        |           | 16K  |              |      |
|               | /43    | 32        | 8K   | 1M           | 85   |
|               | /44    | 16        | 4K   | 1M           | 84   |
|               | /45    | 8         | 2K   | 512K         | 83   |
|               | /46    | 4         | 1K   | 256K         | 82   |
|               | /47    | 2         | 512  | 128K         | 81   |
|               | /48    | 1         | 256  | 64K          | 80   |
|               | /49    |           | 128  | 32K          | 79   |
|               | /50    |           | 64   | 16K          | 78   |
|               | /51    |           | 32   | 8K           | 77   |
|               | /52    |           | 16   | 4K           | 76   |
|               | /53    |           | 8    | 2K           | 75   |
|               | /54    |           | 4    | 1K           | 74   |
|               | /55    |           | 2    | 512          | 73   |
|               | /56    |           | 1    | 256          | 72   |
| ()            | /57    |           |      | 128          | 71   |
| $\mathcal{C}$ | /58    |           |      | 64           | 70   |
| O             | /59    |           |      | 32           | 69   |
| Z             | /60    |           |      | 16           | 68   |
| 111           | /61    |           |      | 8            | 67   |
| <u> </u>      | /62    |           |      | 4            | 66   |
| RIPENCC       | /63    |           |      | 2            | 65   |
|               | /64    |           |      | 1            | 64   |

| IP Addresses | Bits | Prefix | Subnet Mask     |
|--------------|------|--------|-----------------|
| 1            | 0    | /32    | 255.255.255.255 |
| 2            | 1    | /31    | 255.255.255.254 |
| 4            | 2    | /30    | 255.255.255.252 |
| 8            | 3    | /29    | 255.255.255.248 |
| 16           | 4    | /28    | 255.255.255.240 |
| 32           | 5    | /27    | 255.255.255.224 |
| 64           | 6    | /26    | 255.255.255.192 |
| 128          | 7    | /25    | 255.255.255.128 |
| 256          | 8    | /24    | 255.255.255.0   |
| 512          | 9    | /23    | 255.255.254.0   |
| 1 K          | 10   | /22    | 255.255.252.0   |
| 2 K          | 11   | /21    | 255.255.248.0   |
| 4 K          | 12   | /20    | 255.255.240.0   |
| 8 K          | 13   | /19    | 255.255.224.0   |
| 16 K         | 14   | /18    | 255.255.192.0   |
| 32 K         | 15   | /17    | 255.255.128.0   |
| 64 K         | 16   | /16    | 255.255.0.0     |
| 128 K        | 17   | /15    | 255.254.0.0     |
| 256 K        | 18   | /14    | 255.252.0.0     |
| 512 K        | 19   | /13    | 255.248.0.0     |
| 1 M          | 20   | /12    | 255.240.0.0     |
| 2 M          | 21   | /11    | 255.224.0.0     |
| 4 M          | 22   | /10    | 255.192.0.0     |
| 8 M          | 23   | /9     | 255.128.0.0     |
| 16 M         | 24   | /8     | 255.0.0.0       |
| 32 M         | 25   | /7     | 254.0.0.0       |
| 64 M         | 26   | /6     | 252.0.0.0       |
| 128 M        | 27   | /5     | 248.0.0.0       |
| 256 M        | 28   | /4     | 240.0.0.0       |
| 512 M        | 29   | /3     | 224.0.0.0       |
| 1024 M       | 30   | /2     | 192.0.0.0       |
| 2048 M       | 31   | /1     | 128.0.0.0       |
| 4096 M       | 32   | /0     | 0.0.0.0         |

#### IPv6 address distribution



#### IPv6 basics

- IPv6 address: 128 bits
  - 32 bits in IPv4
- Every subnet should be a /64
- Customer assignments (sites) between:
  - /64 (1 subnet)
  - /48 (65536 subnets)
- Minimum allocation size /32
  - 65536 /48's



#### IPv4 vs IPv6 (rounded off, theoretically)



#### Getting an IPv6 allocation

- To qualify, an organisation must:
  - Be an LIR
  - Have a plan for making assignments within two years

Minimum allocation size /32

Announcement as a single prefix recommended

#### What does the first IPv6 allocation cost?



- for all
- pending General Meeting decision

or:



- for approximately 97% of the LIRs
  - more points, but not higher category!

#### Making addressing plans

- Number of hosts is irrelevant
- Multiple /48s per pop can be used
  - separate blocks for infrastructure and customers
  - document address needs for allocation criteria
- Use one /64 block per site for loopbacks
- /64 for all subnets
  - autoconfiguration works
  - renumbering easier
  - less typo errors because of simplicity

#### Customer assignments

- Give your customers enough addresses
  - Up to a /48
- For more addresses, send in request form
  - Alternatively, make a sub-allocation

 Every assignment must now be registered in the RIPE database

#### Using AGGREGATED-BY-LIR



#### Getting IPv6 PI address space

- To qualify, an organisation must:
  - Demonstrate it will multihome
  - Meet the contractual requirements for provider independent resources

Minimum assignment size /48

#### Getting IPv6 PI address space for an LIR

- To qualify, an organisation must:
  - Demonstrate it will multihome
  - Meet the contractual requirements for provider independent resources
  - LIRs must demonstrate special routing requirements
- Minimum assignment size /48

PI space can not be used for sub-assignments

#### LIR's IPv6 PI cannot be used for

• DSL, cable, GPRS customers

Webhosting, if IP addresses not shared

#### IPv6 and IPv4 compatibility?

IPv6 is a different protocol from IPv4

IPv6 hosts cannot talk to IPv4 hosts directly

- Transition mechanisms
  - NAT64 and DNS64
  - Tools like 6rd and other tunnelling options

- ...



# 0:11:00:13

## IPv6 Deployment Statistics



## IPv6 Ripeness

- Rating system:
  - One star if the LIR has an IPv6 allocation
  - Additional stars if:
    - IPv6 Prefix is announced on router
    - A route6 object is in the RIPE Database
    - Reverse DNS is set up
  - A list of all 4 star LIRs: <a href="http://ripeness.ripe.net/">http://ripeness.ripe.net/</a>

## IPv6 RIPEness: 7512 LIRs (31 May 2011)



## IPv6 RIPEness – countries (31 May 2011)



## IPv6 RIPEness – relative (31 May 2011)



## IPv6 enabled ASes in global routing (31.05)



## World IPv6 Day

- 8 June 2011
- Initiated by ISOC
- 0:00 GMT 23:59 GMT
- Top 500 websites
  - Google
  - Facebook
  - Yahoo
  - and you?
- Great test opportunity



## RIPE NCC and World IPv6 Day

- RIPE NCC Measurements
  - Measuring connectivity to World IPv6 Day participants
  - Testing connectivity and performance using TTM
  - Monitoring performance of 6to4 versus native IPv6

- Coordinated events
  - Amsterdam
  - Moscow



Live reports on <a href="http://www.ripe.net/worldipv6day">http://www.ripe.net/worldipv6day</a>

## RIPE NCC @ World IPv6 Day

All of our content and services over IPv6

• IPV6 Eyechart <a href="http://ipv6eyechart.ripe.net/">http://ipv6eyechart.ripe.net/</a>

• IPv6 Day Measurements <a href="http://v6day.ripe.net/">http://v6day.ripe.net/</a>

## Eye Chart for IPv6 Day



## Measurements for IPv6 Day



# 0:11:3000

## Multihomed BGP Routing Setup



## To be or not to be an LIR

| Type                         | Contract with: | Fee 2010 / 2011                                           | Space                     | Member<br>of RIPE<br>NCC | Can<br>influence<br>RIPE<br>policies |
|------------------------------|----------------|-----------------------------------------------------------|---------------------------|--------------------------|--------------------------------------|
| End User                     | LIR            | PI = € 50<br>ASN = € 50                                   | PI                        | No                       | Yes                                  |
| LIR                          | RIPE NCC       | Start-up fee<br>+ yearly fee<br>XS = € 1300<br>+ PI / ASN | PA<br>allocations<br>+ PI | Yes                      | Yes                                  |
| Direct<br>Assignment<br>User | RIPE NCC       | Start-up fee<br>+ € 1300 +<br>PI / ASN                    | PI                        | No                       | Yes                                  |

## Scenario 1: LIR = PA allocation + ASN



## Scenario 2: End User = PI + ASN



- Can NOT sub-assign further!!!
  - (in IPv4 can still use PI for xDSL, broadband...)

## Scenario 3: LIR or DAU = PI + ASN



- Can NOT sub-assign further!!!
  - (in IPv4 can still use PI for xDSL, broadband...)

## Scenario 4: PI End User, not multihomed



- Part of LIR's AS number
  - does not want to / can not run BGP
  - still wants "portable" addresses

## Scenario 5: PA assignment, multihomed



- Very rare and complicated
  - more specific PA prefix announced, to multiple ISPs
  - technically challenging, but "cheap"

## How to get an AS Number

- Assignment requirements
  - Address space
  - Multihoming
  - One AS Number per network

- For LIR itself
- For End User
  - Sponsoring LIR requests it for End User
  - Direct Assignment User requests it for themselves

## 32-bit AS Numbers and you

- New format: "AS4192351863"
- Act now!

- Prepare for 32-bit ASNs in your organisation:
  - Check if hardware is compatible; if not, contact hardware vendor
  - Check if upstream uses compatible hardware; if not, they should upgrade!

## 240:11:3000 1315193.00 193.0.0.1

## RIPE DB



## Registration: RIPE Database

Public Internet resources database

- All LIRs objects are there:
  - Address space: inetnum & inet6num
  - AS Number: aut-num
  - Contact details: person, role, organisation,
  - Strong protection: maintainer (key-cert, irt)

## Connection between objects



## Finding and changing objects

- Querying the RIPE Database
  - Command-line client
  - Web interface
  - Free text search (Glimpse)
  - & http://lab.db.ripe.net/portal/free-text/search.htm

- Updating = creating, modifying, deleting
  - Web, sync, email

## Protection



## Strong authentication

Password (MD5-PW)

Private key / public key

- PGPKEY-<id> and key-cert object

- X.509-<id> and key-cert object



## Protection



Routing & Routing Registry



## What is "Internet Routing Registry"

- Distributed databases with public routing policy information, mirroring each other: <u>irr.net</u>
   APNIC, RADB, Level3, SAVVIS...
- RIPE NCC operates "RIPE Routing Registry"

- Big operators make use of it
  - AS286 (KPN), AS5400 (BT), AS1299 (Telia), AS8918 (Carrier1), AS2764 (Connect), AS3561 (Savvis), AS3356 (Level 3)...

## Publishing routing policy in IRR

- Required by some Transit Providers & IXPs
  - they use it for prefix-based filtering
- Allows for automated generation of prefix filters
  - and router configuration commands, based on RR
- Contributes to routing security
  - prefix filtering based on IRR registered routes prevents accidental leaks and route hijacking
- Consistent information between neighbors
- Good housekeeping

## 85% match between BGP/RIS & RR

According to the RIPE Labs article



- Percentage matching routes in RIPE region (IPv4)
- Percentage matching routes in RIPE region (IPv6)

## RIPE RR is part of the RIPE Database

- route[6] object creation is responsibility of LIR
  - every time you receive a new allocation, do create a route or route6 object
- route and route6 objects represent routed prefix
  - address space being announced by an AS number
    - those are two primary keys
  - only the holder of both address space and AS number can authorize creation of route[6] object

## Authenticating a route6 object for an LIR



## Automation of router configuration

- Describing routing policy in aut-num enables generation of route-maps for policy routing
- Tools can read your policy towards peers
  - translation from RPSL to router configuration commands
- Tools collect the data your peers have in RR
  - if their data changes, you only have to periodically run your scripts to collect updates

## IPv6 in the Routing Registry

## Route6 object:

route6: 2001:DB8::/32

origin: AS65550

## Aut-num object:

aut-num: AS65550

mp-import: afi ipv6.unicast from AS64496 accept ANY

mp-export: afi ipv6.unicast to AS64496 announce AS65550

## RIPE NCC Resource Quality Assistance

- Address distribution no claims about routability
  - but assistance in case of filtering issues:

http://www.ripe.net/lir-services/resource-management/ ripe-ncc-resource-quality-assistance Questions?

training@ripe.net





The End! Y Diwedd Край Fí **Finis** Соңы Liðugt **Ende Finvezh** Кінець Ënn **Fund Konec** Kraj Kpaj Son **Beigas** Vége Lõpp An Críoch **Endir Fine Sfârşit** Fin Τέλος **Einde** Конец Slut **Slutt Pabaiga Tmiem Koniec Amaia** Loppu Fim