
The secret life of a DNS
query

Igor Sviridov <sia@nest.org>
20120522

Preface

Nowadays, when we type URL (or is it a search
string? ;-) into a browser (or mobile device)
many things happen. While most of them are
simple, over the time with iterations and
generations of Internet technologies
overlapping and flourishing the complexity
multiplied, so that often full scope and detail is
missed even from mostly qualified observer.

Let's try to uncover the secret life of DNS
query.

No DNSSEC or IPv6 were harmed :)

No DNSSEC or IPv6 fairies were sacrificed
while writing this presentation. Things are
already convoluted without it, especially for
time allotted. This is reserved for the next
iteration of this talk, if any.

Query Origination

Usually we type URL in a browser, or attempt
to access a non-web network service (send
email, access IMAP, etc) and client DNS
resolver faithfully attempts to translate a name
into a transport destination (this is obviously a
simplification, since multiple name lookup
mechanisms may be involved).

Resolver library on client

● often part of more complex hierarchical
name resolution scheme (Bonjour/mDNS,
local, NIS etc)

● configured statically or dynamically (DHCP
etc) with configuration parameters:
○ list of nameservers
○ explicit or implicit search suffix
○ other resolver options (ndots, timeouts, retries etc)

● resolver issues series of name resolution
lookups until successful

● implements server timeouts and retries

Recursive nameserver (DNS resolver):
types

● ISP provided recursive nameserver
● 3-rd party recursive nameservers (Google DNS,

OpenDNS etc); filtering and augmentation/pollution
● Hijacked resolver settings - nefarious DNS servers
● Local recursive nameserver - on client host
● DNS walled gardens (esp mobile)
● Last-mile DNS spoofing (WiFi captive portals, etc)
● Legal(?!) DNS modifications on backbone level
Our query (likely with various attached suffixes) is
repeatedly sent to one of above destinations until we
get a positive answer - or end up with nonexistent
name once all suffixes are exhausted.

OpenDNS pollution examples:
 - interception/proxying of Google search (likely thing of the past now that Google
switched to SSL
 - replacing NXDOMAIN responses with advertisement
Google Public DNS stated policy is to never interfere or modify DNS response data
WiFi captive portals usually provide same very low TTL response to any query,
sending traffic to a portal.
Walled gardens are a bit similar, but provide not a temporary but permanent DNS
redirection service, for example forwarding all (or some) names to a proxy server,
removing or adding parts of the namespace.
Finally, backbone operators in some countries have being requested by their
governments to remove or redirect records to specific domains deemed illegal.

Recursive nameserver

● respond from cache (if it has it) - ordering
and responses potentially affected by
sortlist, DNS views

● perform DNS traversal talking to
authoritative servers starting with root (and
again using cached data); affected by:
○ forwarders configuration
○ local root cache - ICANN root zone cache and

alternative roots
● anycast can be utilized to reach recursive

server or authoritative servers

Anycast use for nameservers

● Anycast DNS is now in common use for both
authoritative and for recursive servers; it
complicates diagnosis when things go wrong

● how to determine anycast DNS server
location:
○ dig @server id.server TXT chaos [RFC4892]
○ dig @server hostname.bind TXT chaos

● authoritative - how to determine anycast
DNS server location:
○ dig @tld1.ultradns.net A whoareyou.ultradns.net
○ dig @opendns.server TXT which.opendns.com
○ dig any self.myresolver.info +short [@server]
○ dig +nsid +norec soa domain. @server [RFC5001]

If specific instance in Anycast is not responding, or, even worse, is returning wrong or
stale data, it's often hard to pinpoint which server is providing wrong data, especially if
you need to trace it via nameservers you do not control. Mechanisms

Authoritative nameservers

● responses can be static or synthesized
● can be affected by DNS views, rrset-order
● may be by DNS geographic load balancing,

used CDNs/ADNs
● Interplay of CDN's and anycasted DNS;

quality of mapping/discovery of client
resolvers; edns-client-subnet proposal;
Interplay with mobile and VPN

● Local DNS load balancing (failover)

- some CDNs/ADNs are using DNS not only to provide geographical load balancing,
but also to balance between sets of local servers (or load balancers), for example to
provide failover between two load balancers; they also can return ordered data
- CDN vs Anycast recursive (resolver) nameserver issue - anycast-ed nameserver
has multiple locations, so CDN's cannot track it unless Anycast server sends it's
queries from "local" (non-anycasted) ranges. Even worse, clients which reach wrong
anycast instance (say due to VPN connection) end up populating cache with wrong
(suboptimal) data, breaking it for everybody; this is quite common for Google Public
DNS and, for example, Akamai. Google and Neustar have proposed EDNS extension
to embed part of client IP into query; this would allow to geo-target responses based
on Client (and not his resolver) IP, and even more important, to limit scope of cached
DNS responses to a specific prefix.

Conclusion
DNS departed quite far from days of RFC 1035,
and continues to become more complex.

When you need to debug problem with IDN
name, over anycasted IPv6, protected by
DNSSEC, generated by GEO-balanced CDN,
things become a bit convoluted, promising us
future intellectual challenges and gainful
employment for years to come.

Cheers :)

